The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Two conditions are given each of which is both necessary and sufficient for a point to be a global Pareto minimum. The first one is obtained by studying programs where each criterion appears as a single objective function, while the second one is given in terms of a "restricted Lagrangian". The conditions are compared with the familiar characterizations of properly efficient and weakly efficient points of Karlin and Geoffrion.
Currently displaying 1 –
9 of
9