Displaying 1501 – 1520 of 1850

Showing per page

Segregation of Flowing Blood: Mathematical Description

A. Tokarev, G. Panasenko, F. Ataullakhanov (2011)

Mathematical Modelling of Natural Phenomena

Blood rheology is completely determined by its major corpuscles which are erythrocytes, or red blood cells (RBCs). That is why understanding and correct mathematical description of RBCs behavior in blood is a critical step in modelling the blood dynamics. Various phenomena provided by RBCs such as aggregation, deformation, shear-induced diffusion and non-uniform radial distribution affect the passage of blood through the vessels. Hence, they have...

Selecting differentially expressed genes for colon tumor classification

Krzysztof Fujarewicz, Małgorzata Wiench (2003)

International Journal of Applied Mathematics and Computer Science

DNA microarrays provide a new technique of measuring gene expression, which has attracted a lot of research interest in recent years. It was suggested that gene expression data from microarrays (biochips) can be employed in many biomedical areas, e.g., in cancer classification. Although several, new and existing, methods of classification were tested, a selection of proper (optimal) set of genes, the expressions of which can serve during classification, is still an open problem. Recently we have...

Selection Theorem for Systems with Inheritance

A. N. Gorban (2010)

Mathematical Modelling of Natural Phenomena

The problem of finite-dimensional asymptotics of infinite-dimensional dynamic systems is studied. A non-linear kinetic system with conservation of supports for distributions has generically finite-dimensional asymptotics. Such systems are apparent in many areas of biology, physics (the theory of parametric wave interaction), chemistry and economics. This conservation of support has a biological interpretation: inheritance. The finite-dimensional asymptotics demonstrates effects of “natural”...

Self-Assembly of Icosahedral Viral Capsids: the Combinatorial Analysis Approach

R. Kerner (2011)

Mathematical Modelling of Natural Phenomena

An analysis of all possible icosahedral viral capsids is proposed. It takes into account the diversity of coat proteins and their positioning in elementary pentagonal and hexagonal configurations, leading to definite capsid size. We show that the self-organization of observed capsids during their production implies a definite composition and configuration of elementary building blocks. The exact number of different protein dimers is related to the...

Self-replication processes in nanosystems of informatics

Stefan Węgrzyn, Ryszard Winiarczyk, Lech Znamirowski (2003)

International Journal of Applied Mathematics and Computer Science

Recent research on the nanotechnological processes of molecular products and object synthesis as well as research on the nanosystems of informatics, stimulates the development of technical systems of informatics. Until now, they have been used mainly for computational tasks when, similarly to biological organisms, they allowed the development of self-replicating products and complete objects. One can focus here on the model of a circulation of materials, information and energy in a biological cell,...

Self-similarity in chemotaxis systems

Yūki Naito, Takashi Suzuki (2008)

Colloquium Mathematicae

We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.

Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow (2010)

Mathematical Modelling of Natural Phenomena

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral...

Semilinear perturbations of Hille-Yosida operators

Horst R. Thieme, Hauke Vosseler (2003)

Banach Center Publications

The semilinear Cauchy problem (1) u’(t) = Au(t) + G(u(t)), u ( 0 ) = x D ( A ) ¯ , with a Hille-Yosida operator A and a nonlinear operator G: D(A) → X is considered under the assumption that ||G(x) - G(y)|| ≤ ||B(x -y )|| ∀x,y ∈ D(A) with some linear B: D(A) → X, B ( λ - A ) - 1 x = λ 0 e - λ t V ( s ) x d s , where V is of suitable small strong variation on some interval [0,ε). We will prove the existence of a semiflow on [ 0 , ) × D ( A ) ¯ that provides Friedrichs solutions in L₁ for (1). If X is a Banach lattice, we replace the condition above by |G(x) - G(y)| ≤ Bv whenever...

Sensitivity studies of pollutant concentrations calculated by the UNI-DEM with respect to the input emissions

Ivan Dimov, Raya Georgieva, Tzvetan Ostromsky, Zahari Zlatev (2013)

Open Mathematics

The influence of emission levels on the concentrations of four important air pollutants (ammonia, ozone, ammonium sulphate and ammonium nitrate) over three European cities (Milan, Manchester, and Edinburgh) with different geographical locations is considered. Sensitivity analysis of the output of the Unified Danish Eulerian Model according to emission levels is provided. The Sobol’ variance-based approach for global sensitivity analysis has been applied to compute the corresponding sensitivity measures....

Sensor network design for the estimation of spatially distributed processes

Dariusz Uciński, Maciej Patan (2010)

International Journal of Applied Mathematics and Computer Science

In a typical moving contaminating source identification problem, after some type of biological or chemical contamination has occurred, there is a developing cloud of dangerous or toxic material. In order to detect and localize the contamination source, a sensor network can be used. Up to now, however, approaches aiming at guaranteeing a dense region coverage or satisfactory network connectivity have dominated this line of research and abstracted away from the mathematical description of the physical...

Serveis estadístics. Preparant-se per al futur.

Ivan P. Fellegi (1999)

Qüestiió

El objetivo de este análisis es mirar hacia adelante: cuáles son los retos a los que se enfrentan las agencias de estadística y cómo han de encararlos. Se analiza el contexto dentro del cual han de evolucionar los institutos de estadística: las principales fuerzas que modifican la economía y la sociedad, las medidas políticas nuevas que aparentemente requieren información estadística nueva o adicional y los cambios en la naturaleza de los gobiernos que tienen repercusiones significativas para los...

Significance tests to identify regulated proteins based on a large number of small samples

Frank Klawonn (2012)

Kybernetika

Modern biology is interested in better understanding mechanisms within cells. For this purpose, products of cells like metabolites, peptides, proteins or mRNA are measured and compared under different conditions, for instance healthy cells vs. infected cells. Such experiments usually yield regulation or expression values – the abundance or absence of a cell product in one condition compared to another one – for a large number of cell products, but with only a few replicates. In order to distinguish...

Simulating Kinetic Processes in Time and Space on a Lattice

J. P. Gill, K. M. Shaw, B. L. Rountree, C. E. Kehl, H. J. Chiel (2011)

Mathematical Modelling of Natural Phenomena

We have developed a chemical kinetics simulation that can be used as both an educational and research tool. The simulator is designed as an accessible, open-source project that can be run on a laptop with a student-friendly interface. The application can potentially be scaled to run in parallel for large simulations. The simulation has been successfully used in a classroom setting for teaching basic electrochemical properties. We have shown that...

Simulation of electrophysiological waves with an unstructured finite element method

Yves Bourgault, Marc Ethier, Victor G. LeBlanc (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

Currently displaying 1501 – 1520 of 1850