The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 401 –
420 of
3836
Geometric control theory and Riemannian techniques are used to describe
the reachable set at time t of left invariant single-input control systems
on semi-simple compact Lie groups and to
estimate the minimal time needed to reach any point from identity.
This method provides an effective way to give an upper and a lower bound
for the minimal time needed to transfer a controlled quantum system
with a drift from a given initial position to a given final position.
The bounds include diameters...
Knowledge based controller for a balance control model is presented in this paper. The design of the controller was based on the human control of the same process. Developed controller is tested by means of simulation and operation on the laboratory balance control model. The simulation results of the controller as well as a statistical description of the experiments with developed controller and human control is presented in the paper. Verification is based on experiments with an intelligent controller...
We calculate explicitly the optimal strategy for an investor with exponential utility function when the price of a single risky asset (stock) follows a discrete-time autoregressive Gaussian process. We also calculate its performance and analyse it when the trading horizon tends to infinity. Dependence of the asymptotic performance on the autoregression parameter is determined. This provides, to the best of our knowledge, the first instance of a theorem linking directly the memory of the asset price...
The article presents an extension of the theory of standard Markov decision processes on discrete spaces and with the average cost as the objective function which permits to take into account a fuzzy average cost of a trapezoidal type. In this context, the fuzzy optimal control problem is considered with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Each of these cases extends the standard optimal control problem, and for...
The classical Cayley-Hamilton theorem is extended to nonlinear time-varying systems with square and rectangular system matrices. It is shown that in both cases system matrices satisfy many equations with coefficients being the coefficients of characteristic polynomials of suitable square matrices. The proposed theorems are illustrated with numerical examples.
This paper considers the problem of robust reconstruction of simultaneous actuator and sensor faults for a class of uncertain Takagi-Sugeno nonlinear systems with unmeasurable premise variables. The proposed fault reconstruction and estimation design method with H∞ performance is used to reconstruct both actuator and sensor faults when the latter are transformed into pseudo-actuator faults by introducing a simple filter. The main contribution is to develop a sliding mode observer (SMO) with two...
In this paper, we discuss an hp-discontinuous Galerkin finite
element method (hp-DGFEM) for the laser surface hardening of
steel, which is a constrained optimal control problem governed by a
system of differential equations, consisting of an ordinary
differential equation for austenite formation and a semi-linear
parabolic differential equation for temperature evolution. The space
discretization of the state variable is done using an hp-DGFEM,
time and control discretizations are based on a discontinuous
Galerkin...
In this paper, we discuss an hp-discontinuous Galerkin finite
element method (hp-DGFEM) for the laser surface hardening of
steel, which is a constrained optimal control problem governed by a
system of differential equations, consisting of an ordinary
differential equation for austenite formation and a semi-linear
parabolic differential equation for temperature evolution. The space
discretization of the state variable is done using an hp-DGFEM,
time and control discretizations are based on a discontinuous
Galerkin...
This paper presents delay-dependent stabilization criteria for linear time-varying delay systems. A less conservative stabilization criterion is derived by invoking a new Lyapunov-Krasovskii functional and then, extended reciprocally convex inequality in combination with Wirtinger's inequality is exploited to obtain an improved stabilization criterion where a set of nonlinear matrix inequalities is solved by applying the cone complementarity algorithm. The proposed stabilization technique transforms...
In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints needs solving...
Currently displaying 401 –
420 of
3836