The search session has expired. Please query the service again.
Dans cet article on étudie le problème de l’unicité locale pour le système de Lamé. On prouve qu’on a l’unicité de Cauchy par rapport à toute surface non caractéristique. Nous donnons également deux résultats de densité qui s’applique à la théorie du contrôle pour le système de Lamé.
In this paper, we study the uniqueness problem for the Lamé
system. We prove that we have the uniqueness property across any
non characteristic surface. We also give two results which apply
to the boundary controllability for the Lamé system.
This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter . We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls as goes to zero. It is shown that for any time sufficiently large but independent of and for each initial data in a suitable space there exists a uniformly bounded...
This article considers the linear 1-d Schrödinger equation in (0,π)
perturbed by a vanishing viscosity term depending on a small parameter
ε > 0. We study the boundary controllability properties of this
perturbed equation and the behavior of its boundary controls
vε as ε goes to zero. It
is shown that, for any time T sufficiently large but independent of
ε and for each initial datum in
H−1(0,π), there exists a uniformly...
This article considers the linear 1-d Schrödinger equation in (0,π)
perturbed by a vanishing viscosity term depending on a small parameter
ε > 0. We study the boundary controllability properties of this
perturbed equation and the behavior of its boundary controls
vε as ε goes to zero. It
is shown that, for any time T sufficiently large but independent of
ε and for each initial datum in
H−1(0,π), there exists a uniformly...
This paper deals with the distributed and boundary controllability of the so called Leray-α model. This is a regularized variant of the Navier−Stokes system (α is a small positive parameter) that can also be viewed as a model for turbulent flows. We prove that the Leray-α equations are locally null controllable, with controls bounded independently of α. We also prove that, if the initial data are sufficiently small, the controls converge as α → 0+ to a null control of the Navier−Stokes equations....
In this paper we prove a unique continuation
result for a cascade system of parabolic equations, in which the solution of the first
equation is (partially) used as a forcing term for the second equation. As a
consequence we prove the existence of ε-insensitizing controls for some
parabolic equations when the control region and the observability region do not intersect.
We study a non standard unique continuation property for the biharmonic spectral problem in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle , and , a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing a Stokes...
We study a non standard unique continuation property for the
biharmonic spectral problem in a 2D
corner with homogeneous Dirichlet boundary conditions and a
supplementary third order boundary condition on one side of the
corner. We prove that if the corner has an angle ,
and , a unique continuation
property holds. Approximate controllability of a 2-D linear
fluid-structure problem follows from this property, with a control
acting on the elastic side of a corner in a domain containing...
The goal of this article is the study of the approximate controllability
for two approximations of Navier Stokes equations with distributed controls.
The method of proof combines a suitable linearization of the system with a
fixed point argument. We then are led to study the approximate controllability
of linear Stokes systems with potentials. We study both the case where there
is no constraint on the control and the case where we search a control having
one null component. In both cases,...
Currently displaying 1 –
19 of
19