Displaying 121 – 140 of 303

Showing per page

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue, Ronghui Lu (2012)

Kybernetika

A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are...

Global stability analysis and control of leptospirosis

Kazeem Oare Okosun, M. Mukamuri, Daniel Oluwole Makinde (2016)

Open Mathematics

The aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction...

High-Order Control Variations and Small-Time Local Controllability

Krastanov, Mikhail (2010)

Serdica Journal of Computing

The importance of “control variations” for obtaining local approximations of the reachable set of nonlinear control systems is well known. Heuristically, if one can construct control variations in all possible directions, then the considered control system is small-time locally controllable (STLC). Two concepts of control variations of higher order are introduced for the case of smooth control systems. The relation between these variations and the small-time local controllability is studied and...

Hölder equivalence of the value function for control-affine systems

Dario Prandi (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the continuity and the Hölder equivalence w.r.t. an Euclidean distance of the value function associated with the L1 cost of the control-affine system q̇ = f0(q) + ∑j=1m ujfj(q), satisfying the strong Hörmander condition. This is done by proving a result in the same spirit as the Ball–Box theorem for driftless (or sub-Riemannian) systems. The techniques used are based on a reduction of the control-affine system to a linear but time-dependent one, for which we are able to define a generalization...

Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers

Lan Zhang, Cheng Jian Zhang (2008)

Kybernetika

A four-dimensional hyperchaotic Lü system with multiple time-delay controllers is considered in this paper. Based on the theory of Hopf bifurcation in delay system, we obtain a simple relationship between the parameters when the system has a periodic solution. Numerical simulations show that the assumption is a rational condition, choosing parameter in the determined region can control hyperchaotic Lü system well, the chaotic state is transformed to the periodic orbit. Finally, we consider the differences...

Hoptf bifurcation from infinity for planar control systems.

Jaume Llibre, Enrique Ponce (1997)

Publicacions Matemàtiques

Symmetric piecewise linear bi-dimensional systems are very common in control engineering. They constitute a class of non-differentiable vector fields for which classical Hopf bifurcation theorems are not applicable. For such systems, sufficient and necessary conditions for bifurcation of a limit cycle from the periodic orbit at infinity are given.

How humans fly

Alain Ajami, Jean-Paul Gauthier, Thibault Maillot, Ulysse Serres (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the general problem of reconstructing the cost from the observation of trajectories, in a problem of optimal control. It is motivated by the following applied problem, concerning HALE drones: one would like them to decide by themselves for their trajectories, and to behave at least as a good human pilot. This applied question is very similar to the problem of determining what is minimized in human locomotion. These starting points are the reasons for the particular classes...

How to state necessary optimality conditions for control problems with deviating arguments?

Lassana Samassi, Rabah Tahraoui (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to give a general idea to state optimality conditions of control problems in the following form: inf ( u , v ) 𝒰 a d 0 1 f t , u ( θ v ( t ) ) , u ' ( t ) , v ( t ) d t , (1) where 𝒰 a d is a set of admissible controls and θ v is the solution of the following equation: { d θ ( t ) d t = g ( t , θ ( t ) , v ( t ) ) , t [ 0 , 1 ] ; θ ( 0 ) = θ 0 , θ ( t ) [ 0 , 1 ] t . (2). The results are nonlocal and new.

Immunotherapy with interleukin-2: A study based on mathematical modeling

Sandip Banerjee (2008)

International Journal of Applied Mathematics and Computer Science

The role of interleukin-2 (IL-2) in tumor dynamics is illustrated through mathematical modeling, using delay differential equations with a discrete time delay (a modified version of the Kirshner-Panetta model). Theoretical analysis gives an expression for the discrete time delay and the length of the time delay to preserve stability. Numerical analysis shows that interleukin-2 alone can cause the tumor cell population to regress.

Infinite time regular synthesis

B. Piccoli (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we provide a new sufficiency theorem for regular syntheses. The concept of regular synthesis is discussed in [12], where a sufficiency theorem for finite time syntheses is proved. There are interesting examples of optimal syntheses that are very regular, but whose trajectories have time domains not necessarily bounded. The regularity assumptions of the main theorem in [12] are verified by every piecewise smooth feedback control generating extremal trajectories that reach the target...

Infinite-dimensional Sylvester equations: Basic theory and application to observer design

Zbigniew Emirsajłow (2012)

International Journal of Applied Mathematics and Computer Science

This paper develops a mathematical framework for the infinite-dimensional Sylvester equation both in the differential and the algebraic form. It uses the implemented semigroup concept as the main mathematical tool. This concept may be found in the literature on evolution equations occurring in mathematics and physics and is rather unknown in systems and control theories. But it is just systems and control theory where Sylvester equations widely appear, and for this reason we intend to give a mathematically...

Leader-following consensus of multiple linear systems under switching topologies: An averaging method

Wei Ni, Xiaoli Wang, Chun Xiong (2012)

Kybernetika

The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI...

Currently displaying 121 – 140 of 303