Displaying 141 – 160 of 303

Showing per page

Linearization techniques for See PDF -control problems and dynamic programming principles in classical and See PDF -control problems

Dan Goreac, Oana-Silvia Serea (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the paper is to provide a linearization approach to the See PDF -control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating See PDF problems in continuous and lower semicontinuous setting.

Linearization techniques for 𝕃 See PDF-control problems and dynamic programming principles in classical and 𝕃 See PDF-control problems

Dan Goreac, Oana-Silvia Serea (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the paper is to provide a linearization approach to the 𝕃 See PDF-control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the 𝕃 p See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating 𝕃 See PDF problems in continuous and lower semicontinuous...

Local Controllability around Closed Orbits

Marek Grochowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We give a necessary and sufficient condition for local controllability around closed orbits for general smooth control systems. We also prove that any such system on a compact manifold has a closed orbit.

Minimum energy control of positive continuous-time linear systems with bounded inputs

Tadeusz Kaczorek (2013)

International Journal of Applied Mathematics and Computer Science

The minimum energy control problem for positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.

Model following control system with time delays

Dazhong Wang, Shujing Wu, Wei Zhang, Guoqiang Wang, Fei Wu, Shigenori Okubo (2016)

Kybernetika

Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part f ( v ( t ) ) of the controlled object as | | f ( v ( t ) ) | | α + β | | v ( t ) | | γ , and show the bounded of internal states by separating the nonlinear part into γ 0 . Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method.

Motion planning and feedback control for a unicycle in a way point following task: The VFO approach

Maciej Michałek, Krzysztof Kozłowski (2009)

International Journal of Applied Mathematics and Computer Science

This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop motion realization stage are considered. The way point following task is determined by the user-defined sequence of waypoints which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any interpolation...

Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization

Iasson Karafyllis, Zhong-Ping Jiang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work, we propose a methodology for the expression of necessary and sufficient Lyapunov-like conditions for the existence of stabilizing feedback laws. The methodology is an extension of the well-known Control Lyapunov Function (CLF) method and can be applied to very general nonlinear time-varying systems with disturbance and control inputs, including both finite and infinite-dimensional systems. The generality of the proposed methodology is also reflected upon by the fact that partial...

Necessary Optimality Conditions for a Lotka-Volterra Three Species System

N. C. Apreutesei (2010)

Mathematical Modelling of Natural Phenomena

An optimal control problem is studied for a Lotka-Volterra system of three differential equations. It models an ecosystem of three species which coexist. The species are supposed to be separated from each others. Mathematically, this is modeled with the aid of two control variables. Some necessary conditions of optimality are found in order to maximize the total number of individuals at the end of a given time interval.

Currently displaying 141 – 160 of 303