Boundedness of the solution of the third problem for the Laplace equation
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 2, page 317-340
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "Boundedness of the solution of the third problem for the Laplace equation." Czechoslovak Mathematical Journal 55.2 (2005): 317-340. <http://eudml.org/doc/30947>.
@article{Medková2005,
abstract = {A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {third problem; Laplace equation; third problem; Laplace equation},
language = {eng},
number = {2},
pages = {317-340},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of the solution of the third problem for the Laplace equation},
url = {http://eudml.org/doc/30947},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Medková, Dagmar
TI - Boundedness of the solution of the third problem for the Laplace equation
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 317
EP - 340
AB - A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.
LA - eng
KW - third problem; Laplace equation; third problem; Laplace equation
UR - http://eudml.org/doc/30947
ER -
References
top- Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
- Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1961. (1961) MR0106366
- Potential theory and function theory for irregular regions, Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian) (1967)
- The Lebesgue set of a function whose partial derivatives are -th power summable, Indiana Univ. Math. J. 22 (1972), 139–158. (1972) MR0435361
- 10.1215/ijm/1255456061, Illinois J. Math. 4 (1960), 452–478. (1960) Zbl0151.05402MR0130338DOI10.1215/ijm/1255456061
- Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics 128, Cambridge University Press, Cambridge, 2000. (2000) MR1751289
- On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19 (1986), 60–64. (1986) MR0880678
- Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50, Linköping Univ., Linköping.
- Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Linköping.
- Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06, Linköping Univ., Linköping.
- Introduction to Potential Theory. Pure and Applied Mathematics 22, John Wiley & Sons, , 1969. (1969) MR0261018
- Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
- 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
- Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 293–308. (1986) MR0854323
- Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
- 10.1023/A:1022818618177, Czechoslovak Math. J. 47 (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
- 10.1023/A:1023267018214, Appl. Math. 43 (1998), 133–155. (1998) MR1609158DOI10.1023/A:1023267018214
- 10.1023/A:1022447908645, Czechoslovak Math. J. 48 (1998), 768–784. (1998) DOI10.1023/A:1022447908645
- 10.1023/A:1026239404667, Czechoslovak Math. J 53 (2003), 377–395. (2003) MR1983459DOI10.1023/A:1026239404667
- 10.1023/B:CMAJ.0000024512.23001.f3, Czechoslovak Math. J 53 (2003), 669–688. (2003) MR2000062DOI10.1023/B:CMAJ.0000024512.23001.f3
- 10.1023/A:1022209421576, Appl. Math. 44 (1999), 143–168. (1999) DOI10.1023/A:1022209421576
- Les méthodes directes en théorie des équations élliptiques, Academia, Prague, 1967. (1967) MR0227584
- Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
- Generalized Robin problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
- An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
- The third boundary value problem in potential theory, Czechoslovak Math. J. 2(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- 10.1080/00036819208840093, Applicable Analysis 45 (1992), 135–177. (1992) MR1293594DOI10.1080/00036819208840093
- 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) Zbl0921.31004MR1378015DOI10.1080/00036819508840313
- Principles of Functional Analysis, Academic Press, , 1973. (1973) MR0445263
- Weakly Differentiable Functions, Springer-Verlag, , 1989. (1989) Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.