Boundedness of the solution of the third problem for the Laplace equation

Dagmar Medková

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 2, page 317-340
  • ISSN: 0011-4642

Abstract

top
A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.

How to cite

top

Medková, Dagmar. "Boundedness of the solution of the third problem for the Laplace equation." Czechoslovak Mathematical Journal 55.2 (2005): 317-340. <http://eudml.org/doc/30947>.

@article{Medková2005,
abstract = {A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {third problem; Laplace equation; third problem; Laplace equation},
language = {eng},
number = {2},
pages = {317-340},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of the solution of the third problem for the Laplace equation},
url = {http://eudml.org/doc/30947},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Medková, Dagmar
TI - Boundedness of the solution of the third problem for the Laplace equation
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 317
EP - 340
AB - A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.
LA - eng
KW - third problem; Laplace equation; third problem; Laplace equation
UR - http://eudml.org/doc/30947
ER -

References

top
  1. Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
  2. Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1961. (1961) MR0106366
  3. Potential theory and function theory for irregular regions, Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian) (1967) 
  4. The Lebesgue set of a function whose partial derivatives are p -th power summable, Indiana Univ. Math.  J. 22 (1972), 139–158. (1972) MR0435361
  5. 10.1215/ijm/1255456061, Illinois J.  Math. 4 (1960), 452–478. (1960) Zbl0151.05402MR0130338DOI10.1215/ijm/1255456061
  6. Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics  128, Cambridge University Press, Cambridge, 2000. (2000) MR1751289
  7. On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19 (1986), 60–64. (1986) MR0880678
  8. Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50, Linköping Univ., Linköping. 
  9. Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Linköping. 
  10. Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06, Linköping Univ., Linköping. 
  11. Introduction to Potential Theory. Pure and Applied Mathematics  22, John Wiley & Sons, , 1969. (1969) MR0261018
  12. Integral Operators in Potential Theory. Lecture Notes in Mathematics  823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
  13. 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
  14. Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 293–308. (1986) MR0854323
  15. Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
  16. 10.1023/A:1022818618177, Czechoslovak Math.  J. 47 (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
  17. 10.1023/A:1023267018214, Appl. Math. 43 (1998), 133–155. (1998) MR1609158DOI10.1023/A:1023267018214
  18. 10.1023/A:1022447908645, Czechoslovak Math.  J. 48 (1998), 768–784. (1998) DOI10.1023/A:1022447908645
  19. 10.1023/A:1026239404667, Czechoslovak Math.  J 53 (2003), 377–395. (2003) MR1983459DOI10.1023/A:1026239404667
  20. 10.1023/B:CMAJ.0000024512.23001.f3, Czechoslovak Math.  J 53 (2003), 669–688. (2003) MR2000062DOI10.1023/B:CMAJ.0000024512.23001.f3
  21. 10.1023/A:1022209421576, Appl. Math. 44 (1999), 143–168. (1999) DOI10.1023/A:1022209421576
  22. Les méthodes directes en théorie des équations élliptiques, Academia, Prague, 1967. (1967) MR0227584
  23. Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
  24. Generalized Robin problem in potential theory, Czechoslovak Math.  J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
  25. An operator connected with the third boundary value problem in potential theory, Czechoslovak Math.  J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
  26. The third boundary value problem in potential theory, Czechoslovak Math.  J. 2(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
  27. 10.1080/00036819208840093, Applicable Analysis 45 (1992), 135–177. (1992) MR1293594DOI10.1080/00036819208840093
  28. 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) Zbl0921.31004MR1378015DOI10.1080/00036819508840313
  29. Principles of Functional Analysis, Academic Press, , 1973. (1973) MR0445263
  30. Weakly Differentiable Functions, Springer-Verlag, , 1989. (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.