Représentations galoisiennes associées aux représentations automorphes autoduales de G L ( n )

Laurent Clozel

Publications Mathématiques de l'IHÉS (1991)

  • Volume: 73, page 97-145
  • ISSN: 0073-8301

How to cite

top

Clozel, Laurent. "Représentations galoisiennes associées aux représentations automorphes autoduales de $GL(n)$." Publications Mathématiques de l'IHÉS 73 (1991): 97-145. <http://eudml.org/doc/104076>.

@article{Clozel1991,
author = {Clozel, Laurent},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {automorphic representations; totally real number field; -adic Galois representations; unitary group; base change; Ramanujan conjecture; -field},
language = {fre},
pages = {97-145},
publisher = {Institut des Hautes Études Scientifiques},
title = {Représentations galoisiennes associées aux représentations automorphes autoduales de $GL(n)$},
url = {http://eudml.org/doc/104076},
volume = {73},
year = {1991},
}

TY - JOUR
AU - Clozel, Laurent
TI - Représentations galoisiennes associées aux représentations automorphes autoduales de $GL(n)$
JO - Publications Mathématiques de l'IHÉS
PY - 1991
PB - Institut des Hautes Études Scientifiques
VL - 73
SP - 97
EP - 145
LA - fre
KW - automorphic representations; totally real number field; -adic Galois representations; unitary group; base change; Ramanujan conjecture; -field
UR - http://eudml.org/doc/104076
ER -

References

top
  1. [C] Automorphic Forms, Representations, and L-functions, Proceedings of the Corvallis Conference, A. BOREL et W. CASSELMAN eds, Proc. Symp. Pure Math., 33, A.M.S., Providence, 1979, I, II. 
  2. [AA] Automorphic Forms, Shimura Varieties, and L-functions, Proceedings of the Ann Arbor Conference, L. CLOZEL et J. S. MILNE eds, Academic Press, 1990, I, II. Zbl0684.00003
  3. [1] J. ADAMS, D. VOGAN, Lifting of characters and Harish-Chandra's method of descent, preprint. Zbl0808.22001
  4. [2] J. ARTHUR, A Paley-Wiener theorem for real reductive groups, Acta Math., 150 (1983), 1-89. Zbl0514.22006MR84k:22021
  5. [3] J. ARTHUR, L. CLOZEL, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Math. Studies, Princeton U. Press, 1989. Zbl0682.10022MR90m:22041
  6. [4] D. BLASIUS, Automorphic forms and Galois representations : some examples, in [AA], II, 1-13. Zbl0718.11018
  7. [5] A. BOREL, Automorphic L-functions, in [C], II, 27-62. Zbl0412.10017MR81m:10056
  8. [6] A. BOREL, N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies, Princeton U. Press, 1980. Zbl0443.22010MR83c:22018
  9. [7] A. BOUAZIZ, Relèvement des caractères d'un groupe endoscopique pour le changement de base C/R, Astérisque, 171-172 (1989), 163-194. Zbl0708.22004MR91h:22033
  10. [8] L. CLOZEL, Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sc. E.N.S. (4e sér.), 15 (1982), 45-115. Zbl0516.22010MR84j:22015
  11. [9] L. CLOZEL, The fundamental lemma for stable base change, Duke Math. J., 61 (1990), 255-302. Zbl0731.22011MR91h:22036
  12. [10] L. CLOZEL, On the cuspidal cohomology of arithmetic subgroups of GL(2n)..., Duke Math. J., 55 (1987), 475-486. Zbl0648.22007MR88m:22022
  13. [11] L. CLOZEL, Motifs et formes automorphes : applications du principe de fonctorialité, in [AA], I, 77-159. Zbl0705.11029MR91k:11042
  14. [12] L. CLOZEL, P. DELORME, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs II, Ann. Sc. E.N.S. (4e sér.), 23 (1990), 193-228. Zbl0724.22012MR91g:22013
  15. [13] P. DELORME, Théorème de Paley-Wiener invariant tordu pour le changement de base C/R, preprint. Zbl0765.22007
  16. [14] T. ENRIGHT, Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J., 46 (1979), 513-525. Zbl0427.22010MR81i:22007
  17. [15] M. HARRIS, Automorphic forms of ∂-cohomology type as coherent cohomology classes, J. Diff. Geom., 32 (1990), 1-63. Zbl0711.14012MR91g:11064
  18. [16] G. HARDER, Ueber die Galoiskohomologie halbeinfacher Matrizengruppen II, Math. Zeitschrift, 92 (1966), 396-415. Zbl0152.01001MR34 #2777
  19. [17] J. JOHNSON, Stable base change C/R of certain derived functor modules, Math. Ann., 287 (1990), 467-493. Zbl0672.22016MR91k:22029
  20. [18] R. KOTTWITZ, Rational conjugacy classes in reductive groups, Duke Math. J., 49 (1982), 785-806. Zbl0506.20017MR84k:20020
  21. [19] R. KOTTWITZ, Shimura varieties and twisted orbital integrals, Math. Ann., 269 (1984), 287-300. Zbl0533.14009MR87b:11047
  22. [20] R. KOTTWITZ, Stable trace formula : cuspidal tempered terms, Duke Math. J., 51 (1984), 611-650. Zbl0576.22020MR85m:11080
  23. [21] R. KOTTWITZ, Stable trace formula : elliptic singular terms, Math. Ann., 275 (1986), 365-399. Zbl0577.10028MR88d:22027
  24. [22] R. KOTTWITZ, Shimura varieties and λ-adic representations, in [AA], I, 161-209. Zbl0743.14019MR92b:11038
  25. [23] R. KOTTWITZ, en préparation. 
  26. [24] R. KOTTWITZ, On the λ-adic representations associated to some simple Shimura varieties, preprint, 1989. 
  27. [25] J.-P. LABESSE, Pseudo-coefficients très cuspidaux et K-théorie, preprint. Zbl0789.22028
  28. [26] J.-P. LABESSE, J. SCHWERMER, On liftings and cusp cohomology of arithmetic groups, Inv. Math., 83 (1983), 383-401. Zbl0581.10013MR87g:11060
  29. [27] R. P. LANGLANDS, Les débuts d'une formule des traces stable, Publ. Math. Univ. Paris 7, Paris, s.d. Zbl0532.22017
  30. [28] R. P. LANGLANDS, Automorphic representations, Shimura varieties, and motives, Ein Märchen, in [C], II, 205-246. Zbl0447.12009
  31. [29] R. P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, Institute for Advanced Study, Princeton, 1973. Zbl0741.22009
  32. [30] C. MOEGLIN, J.-L. WALDSPURGER, Le spectre résiduel de GL(n), Ann. Sc. E.N.S. (4e sér.), 22 (1989), 605-674. Zbl0696.10023MR91b:22028
  33. [31] J. ROGAWSKI, Automorphic representations of unitary groups of three variables, Annals of Math. Studies, Princeton U. Press, 1989. Zbl0724.11031
  34. [32] W. SCHARLAU, Quadratic and Hermitian Forms, Springer-Verlag, 1985. Zbl0584.10010MR86k:11022
  35. [33] D. SHELSTAD, Characters and inner forms of quasi-split groups over R, Compositio Math., 39 (1979), 11-45. Zbl0431.22011MR80m:22023
  36. [34] D. SHELSTAD, Base change and a matching theorem for real groups, in Non commutative Harmonic Analysis and Lie Groups, Springer Lecture Notes, 880 (1981), 425-482. Zbl0494.22007MR83i:22024
  37. [35] D. SHELSTAD, Endoscopic groups and base change C/R, Pacific J. Math., 110 (1984), 397-415. Zbl0488.22033MR85b:22017
  38. [36] D. SHELSTAD, Twisted endoscopic groups in the abelian case, non publié. 
  39. [37] M.-F. VIGNÉRAS, On the global correspondence between GL(n) and division algebras, Institute for Advanced Study, Princeton, 1984. 
  40. [38] D. VOGAN, Representations of real reductive Lie groups, Birkhäuser, 1981. Zbl0469.22012MR83c:22022
  41. [39] D. VOGAN, G. ZUCKERMAN, Unitary representations with non-zero cohomology, Compositio Math., 53 (1984), 51-90. Zbl0692.22008MR86k:22040

Citations in EuDML Documents

top
  1. Haruzo Hida, Control theorems of p -nearly ordinary cohomology groups for SL ( n )
  2. Chandrashekhar Khare, Michael Larsen, Gordan Savin, Functoriality and the Inverse Galois problem II: groups of type B n and G 2
  3. Yakov Varshavsky, p -adic uniformization of unitary Shimura varieties
  4. Bert Van Geemen, Jaap Top, Selfdual and non-selfdual 3-dimensional Galois representations
  5. Guy Henniart, Sur la conjecture de Langlands locale pour G L n
  6. A. Borel, J.-P. Labesse, J. Schwermer, On the cuspidal cohomology of S -arithmetic subgroups of reductive groups over number fields
  7. Jim W. Cogdell, Igor I. Piatetski-Shapiro, Converse theorems for G L n
  8. Henri Carayol, Preuve de la conjecture de Langlands locale pour G L n : travaux de Harris-Taylor et Henniart
  9. Alexander Nabutovsky, Shmuel Weinberger, Variational problems for riemannian functionals and arithmetic groups
  10. Joël Bellaïche, Gaëtan Chenevier, Formes non tempérées pour U 3 et conjectures de Bloch–Kato

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.