Estimations d'erreur pour des éléments finis droits presque dégénérés

Pierre Jamet

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1976)

  • Volume: 10, Issue: R1, page 43-60
  • ISSN: 0764-583X

How to cite

top

Jamet, Pierre. "Estimations d'erreur pour des éléments finis droits presque dégénérés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 10.R1 (1976): 43-60. <http://eudml.org/doc/193274>.

@article{Jamet1976,
author = {Jamet, Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R1},
pages = {43-60},
publisher = {Dunod},
title = {Estimations d'erreur pour des éléments finis droits presque dégénérés},
url = {http://eudml.org/doc/193274},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Jamet, Pierre
TI - Estimations d'erreur pour des éléments finis droits presque dégénérés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1976
PB - Dunod
VL - 10
IS - R1
SP - 43
EP - 60
LA - fre
UR - http://eudml.org/doc/193274
ER -

References

top
  1. [1] ADINI A and CLOUGH R W, Analysis of plate bending by the finite element method N S F report G 7337, 1961 
  2. [2] AGMON S, Lectures on elliptic boundary value problems, Van Nostrand, 1965 Zbl0142.37401MR178246
  3. [3] BRAMBLE J H and HILBERT S R, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, S I A M J Numer Anal, 7, 112-124, 1970 Zbl0201.07803MR263214
  4. [4] BRAMBLE J H and ZLAMAL M, Triangular elements in the finite element method, Math Comp , 24,809-820, 1970 Zbl0226.65073MR282540
  5. [5] CIARLET P G and RAVIART P-A, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch Rat Mech Anal, 46, 177-199, 1972 Zbl0243.41004MR336957
  6. [6] CIARLET P G and RAVIART P -A, Interpolation theory over curved elements, with applications to finite element methods, Comp Meth Appl Mech Eng, 1, 217-249, 1972 Zbl0261.65079MR375801
  7. [7] COURANT R and HILBERT D, Methods of mathematical physics Vol 2, Interscience Publishers, 1962 Zbl0099.29504
  8. [8] LIONS J L, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal, 1962 Zbl0143.14003MR251372
  9. [9] NICOLAIDES R AOn a class of finite éléments generaled by Lagrange interpolation, S I A M J , Numer Anal 10, 182-189 1973 Zbl0244.65007MR317512
  10. [10] STRANG G, Approximation in the finite element method, Numer Math , 19, 81-98, 1972 Zbl0221.65174MR305547
  11. [11] STRANG G and Fix G J, An analysis of the finite element method, Prentice Hall, 1973 Zbl0356.65096MR443377
  12. [12] SYNGE, J L, The hypercircle in mathematical physics, Cambridge University Press, 1957 Zbl0079.13802MR97605
  13. [13] ZIENKIENVICZ O C, The finite element method in engineering science, McGraw-Hill, 1971 Zbl0237.73071
  14. [14] ZLAMAL M, On the finite element method, Numer Math , 12,394-409, 1968 Zbl0176.16001MR243753

Citations in EuDML Documents

top
  1. Peter Oswald, Divergence of FEM: Babuška-Aziz triangulations revisited
  2. Pierre Jamet, Estimations d'erreur pour l'approximation de l'équation de la chaleur dans un domaine variable par des méthodes d'éléments finis espace-temps
  3. Peter Oswald, Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error
  4. Kenta Kobayashi, Takuya Tsuchiya, Error estimation for finite element solutions on meshes that contain thin elements
  5. Komla Domelevo, Pascal Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
  6. Michal Křížek, On semiregular families of triangulations and linear interpolation
  7. Kenta Kobayashi, Takuya Tsuchiya, A priori error estimates for Lagrange interpolation on triangles
  8. Kenta Kobayashi, Takuya Tsuchiya, Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation
  9. Komla Domelevo, Pascal Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
  10. Thomas Apel, Ariel L. Lombardi, Max Winkler, Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.