Estimations d'erreur pour des éléments finis droits presque dégénérés
- Volume: 10, Issue: R1, page 43-60
- ISSN: 0764-583X
Access Full Article
topHow to cite
topJamet, Pierre. "Estimations d'erreur pour des éléments finis droits presque dégénérés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 10.R1 (1976): 43-60. <http://eudml.org/doc/193274>.
@article{Jamet1976,
author = {Jamet, Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R1},
pages = {43-60},
publisher = {Dunod},
title = {Estimations d'erreur pour des éléments finis droits presque dégénérés},
url = {http://eudml.org/doc/193274},
volume = {10},
year = {1976},
}
TY - JOUR
AU - Jamet, Pierre
TI - Estimations d'erreur pour des éléments finis droits presque dégénérés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1976
PB - Dunod
VL - 10
IS - R1
SP - 43
EP - 60
LA - fre
UR - http://eudml.org/doc/193274
ER -
References
top- [1] ADINI A and CLOUGH R W, Analysis of plate bending by the finite element method N S F report G 7337, 1961
- [2] AGMON S, Lectures on elliptic boundary value problems, Van Nostrand, 1965 Zbl0142.37401MR178246
- [3] BRAMBLE J H and HILBERT S R, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, S I A M J Numer Anal, 7, 112-124, 1970 Zbl0201.07803MR263214
- [4] BRAMBLE J H and ZLAMAL M, Triangular elements in the finite element method, Math Comp , 24,809-820, 1970 Zbl0226.65073MR282540
- [5] CIARLET P G and RAVIART P-A, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch Rat Mech Anal, 46, 177-199, 1972 Zbl0243.41004MR336957
- [6] CIARLET P G and RAVIART P -A, Interpolation theory over curved elements, with applications to finite element methods, Comp Meth Appl Mech Eng, 1, 217-249, 1972 Zbl0261.65079MR375801
- [7] COURANT R and HILBERT D, Methods of mathematical physics Vol 2, Interscience Publishers, 1962 Zbl0099.29504
- [8] LIONS J L, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal, 1962 Zbl0143.14003MR251372
- [9] NICOLAIDES R AOn a class of finite éléments generaled by Lagrange interpolation, S I A M J , Numer Anal 10, 182-189 1973 Zbl0244.65007MR317512
- [10] STRANG G, Approximation in the finite element method, Numer Math , 19, 81-98, 1972 Zbl0221.65174MR305547
- [11] STRANG G and Fix G J, An analysis of the finite element method, Prentice Hall, 1973 Zbl0356.65096MR443377
- [12] SYNGE, J L, The hypercircle in mathematical physics, Cambridge University Press, 1957 Zbl0079.13802MR97605
- [13] ZIENKIENVICZ O C, The finite element method in engineering science, McGraw-Hill, 1971 Zbl0237.73071
- [14] ZLAMAL M, On the finite element method, Numer Math , 12,394-409, 1968 Zbl0176.16001MR243753
Citations in EuDML Documents
top- Peter Oswald, Divergence of FEM: Babuška-Aziz triangulations revisited
- Pierre Jamet, Estimations d'erreur pour l'approximation de l'équation de la chaleur dans un domaine variable par des méthodes d'éléments finis espace-temps
- Peter Oswald, Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error
- Kenta Kobayashi, Takuya Tsuchiya, Error estimation for finite element solutions on meshes that contain thin elements
- Komla Domelevo, Pascal Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
- Michal Křížek, On semiregular families of triangulations and linear interpolation
- Kenta Kobayashi, Takuya Tsuchiya, A priori error estimates for Lagrange interpolation on triangles
- Kenta Kobayashi, Takuya Tsuchiya, Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation
- Komla Domelevo, Pascal Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
- Thomas Apel, Ariel L. Lombardi, Max Winkler, Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.