The geometry of Markov diffusion generators
Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)
- Volume: 9, Issue: 2, page 305-366
- ISSN: 0240-2963
Access Full Article
topHow to cite
topLedoux, Michel. "The geometry of Markov diffusion generators." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.2 (2000): 305-366. <http://eudml.org/doc/73517>.
@article{Ledoux2000,
author = {Ledoux, Michel},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {logarithmic Sobolev inequalities; Markovian semigroups; isoperimetry; comparison theorems; heat kernel bounds},
language = {eng},
number = {2},
pages = {305-366},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The geometry of Markov diffusion generators},
url = {http://eudml.org/doc/73517},
volume = {9},
year = {2000},
}
TY - JOUR
AU - Ledoux, Michel
TI - The geometry of Markov diffusion generators
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 2
SP - 305
EP - 366
LA - eng
KW - logarithmic Sobolev inequalities; Markovian semigroups; isoperimetry; comparison theorems; heat kernel bounds
UR - http://eudml.org/doc/73517
ER -
References
top- [Au] Aubin ( Th.). — Nonlinear analysis on manifolds. Monge-Ampère equations. Springer (1982). Zbl0512.53044MR681859
- [Ba1] Bakry ( D.). — Transformations de Riesz pour les semigroupes symétriques. Séminaire de Probabilités XIX. Lecture Notes in Math.1123, 2130-174 (1985). Springer. Zbl0561.42010
- [Ba2] Bakry ( D.). — Inégalités de Sobolev faibles : un critère Γ2. Séminaire de Probabilités XXV. Lecture Notes in Math.1485, 234-261 (1991). Springer. Zbl0745.60084MR1187783
- [Ba3] Bakry ( D.). — L'hypercontractivité et son utilisation en théorie des semigroupes. Ecole d'Eté de Probabilités de St-Flour. Lecture Notes in Math.1581, 1-114 (1994). Springer. Zbl0856.47026MR1307413
- [Ba4] Bakry ( D.). — On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. New trends in Stochastic Analysis. 43-75 (1997). World Scientific MR1654503
- [Ba-E] Bakry ( D.), Emery ( M.). — Diffusions hypercontractives. Séminaire de Probabilités XIX. Lecture Notes in Math.1123, 177-206 (1985). Springer. Zbl0561.60080MR889476
- [B-C-L] Bakry ( D.), Concordet ( D.), Ledoux ( M.). - Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM: Probability and Statistics1, 391-407 (1997). Zbl0898.58052MR1486642
- [B-C-L-SC] Bakry ( D.), Coulhon ( T.), Ledoux ( M.), Saloff-Coste ( L.). — Sobolev inequalities in disguise. Indiana J. Math.44, 1033-1074 (1995). Zbl0857.26006MR1386760
- [B-L1] Bakry ( D.), Ledoux ( M.). - Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator. Duke Math. J.85, 253-270 (1996). Zbl0870.60071MR1412446
- [B-L2] Bakry ( D.), Ledoux ( M.). — Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator. Invent. math.123, 259-281 (1996). Zbl0855.58011MR1374200
- [B-L-Q] Bakry ( D.), Ledoux ( M.), Qian ( Z.). — Preprint (1997).
- [B-Q] Bakry ( D.), Qian ( Z.). — Comparison theorem for spectral gap via dimension, diameter and Ricci curvature. Preprint (1998).
- [Be1] Beckner ( W.). — Sobolev inequalities, the Poisson semigroup and analysis on the sphere Sn. Proc. Nat. Acad. Sci.89, 4816-4819 (1992). Zbl0766.46012MR1164616
- [Be2] Beckner ( W.). — Personal communication (1998).
- [Bé] Bérard ( P.H.). — Spectral geometry: Direct and inverse problems. Lecture Notes in Math.1207 (1986). Springer. Zbl0608.58001MR861271
- [BV-V] Bidaut-Veron ( M.-F.), Veron ( L.). - Nonlinear elliptic equations on compact manifolds and asymptotics of Emden equations. Invent. math.106, 489-539 (1991). Zbl0755.35036MR1134481
- [Bob] Bobkov ( S.). — An isoperimetric inequality on the discrete cube and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probability25, 206-214 (1997). Zbl0883.60031MR1428506
- [B-H] Bobkov ( S.), Houdré ( Ch.). — Some connections between Sobolev-type inequalities and isoperimetry. Memoirs of the A.M.S.616 (1997). Zbl0886.49033MR1396954
- [Bor] Borell ( C.). — The Brunn-Minkowski inequality in Gauss space. Invent. math.30, 207-216 (1975). Zbl0292.60004MR399402
- [B-Z] Burago ( Y.D.), Zalgaller ( V.A.). - Geometric inequalities. Springer (1988). First Edition (russian): Nauka (1980). Zbl0633.53002MR936419
- [Ca] Carlen ( E.). — Superadditivity of Fisher's information and logarithmic Sobolev inequalities. J. Funct. Anal.101, 194-211 (1991). Zbl0732.60020MR1132315
- [C-L] Carlen ( E.), Loss ( M.). — Sharp constant in Nash's inequality. Duke Math. J., International Math. Research Notices7, 213-215 (1993). Zbl0822.35018MR1230297
- [C-K-S] Carlen ( E.), Kusuoka ( S.), Stroock ( D.). — Upperbounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré23, 245-287 (1987). Zbl0634.60066MR898496
- [Cha1] Chavel ( I.). - Eigenvalues in Riemannian geometry. Academic Press (1984). Zbl0551.53001MR768584
- [Cha2] Chavel ( I.). - Riemannian geometry - A modern introduction. Cambridge Univ. Press (1993). Zbl0810.53001MR1271141
- [Ch] Cheeger ( J.). — The relation between the Laplacian and the diameter for manifolds of non-negative curvature. Arch. der Math.19, 558-560 (1968). Zbl0177.50201MR238227
- [Che] Cheng ( S.-Y.). — Eigenvalue comparison theorems and its geometric applications. Math. Z.143, 289-297 (1975). Zbl0329.53035MR378001
- [Da] Davies ( E.B.). — Heat kernel and spectral theory. Cambridge Univ. Press (1989). Zbl0699.35006MR990239
- [D-S] Deuschel ( J.-D.), Stroock ( D.). — Large deviations. Academic Press (1989). Zbl0705.60029MR997938
- [Dr] Druet ( O.). — Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds (1998). J. Funct. Anal.159, 217-242 (1998). Zbl0923.46035MR1654123
- [D-H-V] Druet ( O.), Hebey ( E.), Vaugon ( M.). — Optimal Nash's inequalities on Riemannian manifolds: the influence of geometry. International Math. Research Notices14, 735-779 (1999). Zbl0959.58043MR1704184
- [Eh] Ehrhard ( A.). — Symétrisation dans l'espace de Gauss. Math. Scand.53, 281-301 (1983). Zbl0542.60003MR745081
- [F-L-M] Figiel ( T.), Lindenstrauss ( J.), Milman ( V.D.). — The dimensions of almost spherical sections of convex bodies. Acta Math.139, 52-94 (1977). Zbl0375.52002MR445274
- [Fo] Fontenas ( E.). — Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères. Bull. Sci. math.121, 71-96 (1997). Zbl0873.58027MR1435336
- [G-H-L] Gallot ( S.), Hulin ( D.), Lafontaine ( J.). — Riemannian Geometry. Second Edition. Springer (1990). Zbl0716.53001MR1083149
- [Gro] Gromov ( M.). — Paul Lévy's isoperimetric inequality. Preprint I.H.E.S. (1980).
- [G-M] Gromov ( M.), Milman ( V.D.). — A topological application of the isoperimetric inequality. Amer. J. Math.105, 843-854 (1983). Zbl0522.53039MR708367
- [Gr1] Gross ( L.). — Logarithmic Sobolev inequalities. Amer. J. Math.97, 1061-1083 (1975). Zbl0318.46049MR420249
- [Gr2] Gross ( L.). — Logarithmic Sobolev inequalities and contractive properties of semigroups. Dirichlet Forms, Varenna1992. Lect. Notes in Math.1563, 54-88 (1993). Springer. Zbl0812.47037MR1292277
- [He1] Hebey ( E.). — Sobolev spaces on Riemannian manifolds. Lecture Notes in Math.1635. Springer (1996). Zbl0866.58068MR1481970
- [He2] Hebey ( E.). — Nonlinear analysis on manifolds: Sobolev spaces and inequalities. CIMS Lecture Notes (1999). Courant Institute of Mathematical Sciences. Zbl0981.58006MR1688256
- [Il] Ilias ( S.). — Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennnes compactes. Ann. Inst. Fourier33, Fasc. 2, 151-165 (1983). Zbl0528.53040MR699492
- [Kr] Kröger ( P.). — On the spectral gap for compact manifolds. J. Differential Geometry36, 315-330 (1992). Zbl0738.58048MR1180385
- [L-O] Latala ( R.), Oleszkiewicz ( K.). — Between Sobolev and Poincaré (1999). Geometric and Funct. Anal., to appear. Zbl0986.60017MR1796718
- [Le1] Ledoux ( M.). — L'algèbre de Lie des gradients itérés d'un générateur markovien - Développements de moyennes et entropies. Ann. scient. Éc. Norm. Sup.28, 435-460 (1995). Zbl0842.60075MR1334608
- [Le2] Ledoux ( M.). — Isoperimetry and Gaussian Analysis. Ecole d'Eté de Probabilités de St-Flour 1994. Lecture Notes in Math.1648, 165-294 (1996). Springer. Zbl0874.60005MR1600888
- [Le3] Ledoux ( M.). - On manifolds with non-negative Ricci curvature and Sobolev inequalities. Comm. in Analysis and Geometry7, 347-353 (1999). Zbl0953.53025MR1685586
- [Le4] Ledoux ( M.). — Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités XXXIII. Lecture Notes in Math.1709, 120-216 (1999). Springer. Zbl0957.60016MR1767995
- [Lé] Lévy ( P.). — Problèmes concrets d'analyse fonctionnelle. Gauthier-Villars (1951). Zbl0043.32302MR41346
- [Li1] Li ( P.). — A lower bound for the first eigenvalue of the Laplacian on a compact manifold. Indiana Univ. Math. J.28, 1013-1019 (1979). Zbl0429.35054MR551166
- [Li2] Li ( P.). — Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature. Ann. Math.124, 1-21 (1986). Zbl0613.58032MR847950
- [L-Y] Li ( P.), Yau ( S.-T.). — On the parabolic kernel of the Schrödinger operator. Acta Math.156, 153-201 (1986). Zbl0611.58045MR834612
- [Lie] Lieb ( E.). - Gaussian kernels have only Gaussian maximizers. Invent. math.102, 179-208 (1990). Zbl0726.42005MR1069246
- [MK] Mckean ( H.P.). — Geometry of differential space. Ann. Probability1, 197-206 (1973). Zbl0263.60035MR353471
- [Ma] Mazet ( O.). — Classification des semigroupes de diffusion sur Rn associés à une famille de polynômes orthogonaux. Séminaire de Probabilités XXXI. Lecture Notes in Math.1655, 40-53 (1997). Springer. Zbl0883.60072MR1478714
- [Mo] Moser ( J.). — A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math.17, 101-134 (1964). Zbl0149.06902MR159139
- [M-W] Muller ( C.), Weissler ( F.). — Hypercontractivity of the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Funct. Anal.48, 252-283 (1982). Zbl0506.46022MR674060
- [My] Myers ( S.B.). — Connections between differential geometry and topology. Duke Math. J.1, 376-391 (1935). Zbl0012.27502JFM61.0787.02
- [Na] Nash ( J.). — Continuity of solutions of parabolic and elliptic equations. Amer. J. Math.80, 931-954 (1958). Zbl0096.06902MR100158
- [Ob] Obata ( M.). — Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan14, 333-340 (1962). Zbl0115.39302MR142086
- [Os] Osserman ( R.). — The isoperimetric inequality. Bull. Amer. Math. Soc.84, 1182-1238 (1978). Zbl0411.52006MR500557
- [Ro1] Rothaus ( O.). - Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal.42, 358-367 (1981). Zbl0471.58027MR620581
- [Ro2] Rothaus ( O.). — Hypercontractivity and the Bakry-Emery criterion for compact Lie groups. J. Funct. Anal.65, 358-367 (1986). Zbl0589.58036MR826433
- [SC] Saloff-Coste ( L.). - Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below. Colloquium Math.67, 109-121 (1994). Zbl0816.53027MR1292948
- [Sc] Schmidt ( E.). — Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperime- trische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. Math. Nach.1, 81-157 (1948). Zbl0030.07602MR28600
- [So] Sobolev ( S.L.). — On a theorem in functional analysis. Amer. Math. Soc. Translations (2) 34, 39-68 (1963); translated from Mat. Sb. (N.S.)4 (46), 471-497 (1938). Zbl0131.11501MR155181
- [S-T] Sudakov ( V.N.), TSIREL'SON ( B.S.). — Extremal properties of half-spaces for spherically invariant measures. J. Soviet. Math.9, 9-18 (1978); translated from Zap. Nauch. Sem. L.O.M.I.41, 14-24 (1974). Zbl0395.28007MR365680
- [Ta] Talenti ( G.). — Best constants in Sobolev inequality. Ann. di Matem. Pura ed Appl.110, 353-372 (1976). Zbl0353.46018MR463908
- [To] Topogonov ( V.A.). — Riemannian spaces having their curvature bounded below by a positive number. Usphei Math. Nauk.14, 87-135 (1959). Transl. Amer. Math. Soc.37, 291-336 (1964). Zbl0136.42904
- [Va1] Varopoulos ( N.). — Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet. C. R. Acad. Sci.Paris299, 651-654 (1984). Zbl0566.31006MR770455
- [Va2] Varopoulos ( N.). — Hardy-Littlewood theory for semigroups. J. Funct. Anal.63, 240-260 (1985). Zbl0608.47047MR803094
- [Va3] Varopoulos ( N.). — Analysis and geometry on groups. Proceedings of the International Congress of Mathematicians, Kyoto (1990), vol. II, 951-957 (1991). Springer-Verlag. Zbl0744.43006MR1159280
- [Y-Z] Yang ( H.C.), Zhong ( J.Q.). — On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci. Sinica Ser.A27, 1265-1273 (1984). Zbl0561.53046MR794292
- [Wa] Wang ( F.-Y.). — Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields109, 417-424 (1997). Zbl0887.35012MR1481127
- [Yo] Yoshida ( K.). — Functional Analysis. Sixth Edition. Springer (1995).
Citations in EuDML Documents
top- M. S. Santos, Compactness theorems for the Bakry-Emery Ricci tensor on semi-Riemannian manifolds
- Djalil Chafaï, Gaussian maximum of entropy and reversed log-Sobolev inequality
- Nathan Keller, Elchanan Mossel, Arnab Sen, Geometric influences II: Correlation inequalities and noise sensitivity
- Michel Ledoux, Analytic and Geometric Logarithmic Sobolev Inequalities
- Abdellatif Bentaleb, Sur les fonctions extrémales des inégalités de Sobolev des opérateurs de diffusion
- Aline Kurtzmann, The ODE method for some self-interacting diffusions on ℝd
- Gilles Hargé, Characterization of equality in the correlation inequality for convex functions, the U-conjecture
- Michel Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited
- Dario Cordero-Erausquin, Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.