Multi-peak bound states for nonlinear Schrödinger equations

Manuel Del Pino; Patricio L. Felmer

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 2, page 127-149
  • ISSN: 0294-1449

How to cite

top

Del Pino, Manuel, and Felmer, Patricio L.. "Multi-peak bound states for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 15.2 (1998): 127-149. <http://eudml.org/doc/78433>.

@article{DelPino1998,
author = {Del Pino, Manuel, Felmer, Patricio L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multibump solution; positive solution; local maxima},
language = {eng},
number = {2},
pages = {127-149},
publisher = {Gauthier-Villars},
title = {Multi-peak bound states for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78433},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Del Pino, Manuel
AU - Felmer, Patricio L.
TI - Multi-peak bound states for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 2
SP - 127
EP - 149
LA - eng
KW - multibump solution; positive solution; local maxima
UR - http://eudml.org/doc/78433
ER -

References

top
  1. [1] C.C. Chen and C.S. Lin, Uniqueness of the ground state solutions of Δu + f(u) = 0 in RN, N &gt; 3 . Comm. in P.D.E.16. Vol. 8–9, 1991, pp. 1549-1572. Zbl0753.35034MR1132797
  2. [2] V. Coti Zelati and P. Rabinowitz, Homoclinic type solutions for semilinear elliptic PDE on RN'. Comm. Pure and Applied Math, Vol. XLV, 1992, pp. 1217-1269. Zbl0785.35029MR1181725
  3. [3] M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE, Vol. 4, 1996. pp. 121-137. Zbl0844.35032MR1379196
  4. [4] M.J. Esteban and P.L. LionsExistence and non-existence results for semilinear problems in unbounded domains. Proc. Roy. Soc. Edin., Vol. 93A, 1982, pp. 1-14. Zbl0506.35035MR688279
  5. [5] A. Floer and A. Weinstein, Nonspreading Wave Packets for the Cubic Schrödinger Equation with a Bounded Potential, Journal of Functional analysis, Vol. 69, 1986, pp. 397-408. Zbl0613.35076MR867665
  6. [6] M.K. Kwong and L. Zhang, Uniqueness of positive solutions of Δu + f(u) = 0 in an annulusDifferential and Integral Equations , Vol. 4, 1991, pp. 583-599. Zbl0724.34023MR1097920
  7. [7] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part IIAnalyse Nonlin., Vol. 1, 1984, pp. 223-283. Zbl0704.49004MR778974
  8. [8] Y.J. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a. Comm. Partial Diff., Eq. Vol. 13, 1988, pp. 1499-1519. Zbl0702.35228
  9. [9] Y.J. Oh, Corrections to Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a., Comm. Partial Diff. Eq. Vol. 14, 1989, pp. 833-834. Zbl0714.35078
  10. [10] Y.J. Oh, On positive multi-lump bound states nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys., Vol. 131, 1990, pp. 223-253. Zbl0753.35097MR1065671
  11. [111 P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. angew Math Phys, Vol. 43, 1992, pp. 270-291. Zbl0763.35087MR1162728
  12. [12] G. Spradlin, Ph. D. ThesisUniversity of Wisconsin, 1994. 
  13. [13] N. Thandi, Ph. D. ThesisUniversity of Wisconsin, 1995. 
  14. [14] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys., Vol. 153, No 2, 1993, pp. 229-244. Zbl0795.35118MR1218300

Citations in EuDML Documents

top
  1. Kimie Nakashima, Kazunaga Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
  2. Silvia Cingolani, Louis Jeanjean, Simone Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
  3. Silvia Cingolani, Louis Jeanjean, Simone Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
  4. Teresa D'Aprile, Angela Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
  5. Huirong Pi, Chunhua Wang, Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields
  6. Teresa D'Aprile, Juncheng Wei, Clustered solutions around harmonic centers to a coupled elliptic system
  7. Silvia Cingolani, Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari
  8. Francesca Alessio, Piero Montecchiari, Multibump solutions for a class of lagrangian systems slowly oscillating at infinity
  9. Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, On the existence of infinitely many solutions for a class of semilinear elliptic equations in R N
  10. Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in N

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.