Multi-peak bound states for nonlinear Schrödinger equations
Manuel Del Pino; Patricio L. Felmer
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 2, page 127-149
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDel Pino, Manuel, and Felmer, Patricio L.. "Multi-peak bound states for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 15.2 (1998): 127-149. <http://eudml.org/doc/78433>.
@article{DelPino1998,
author = {Del Pino, Manuel, Felmer, Patricio L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multibump solution; positive solution; local maxima},
language = {eng},
number = {2},
pages = {127-149},
publisher = {Gauthier-Villars},
title = {Multi-peak bound states for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78433},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Del Pino, Manuel
AU - Felmer, Patricio L.
TI - Multi-peak bound states for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 2
SP - 127
EP - 149
LA - eng
KW - multibump solution; positive solution; local maxima
UR - http://eudml.org/doc/78433
ER -
References
top- [1] C.C. Chen and C.S. Lin, Uniqueness of the ground state solutions of Δu + f(u) = 0 in RN, N > 3 . Comm. in P.D.E.16. Vol. 8–9, 1991, pp. 1549-1572. Zbl0753.35034MR1132797
- [2] V. Coti Zelati and P. Rabinowitz, Homoclinic type solutions for semilinear elliptic PDE on RN'. Comm. Pure and Applied Math, Vol. XLV, 1992, pp. 1217-1269. Zbl0785.35029MR1181725
- [3] M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE, Vol. 4, 1996. pp. 121-137. Zbl0844.35032MR1379196
- [4] M.J. Esteban and P.L. LionsExistence and non-existence results for semilinear problems in unbounded domains. Proc. Roy. Soc. Edin., Vol. 93A, 1982, pp. 1-14. Zbl0506.35035MR688279
- [5] A. Floer and A. Weinstein, Nonspreading Wave Packets for the Cubic Schrödinger Equation with a Bounded Potential, Journal of Functional analysis, Vol. 69, 1986, pp. 397-408. Zbl0613.35076MR867665
- [6] M.K. Kwong and L. Zhang, Uniqueness of positive solutions of Δu + f(u) = 0 in an annulusDifferential and Integral Equations , Vol. 4, 1991, pp. 583-599. Zbl0724.34023MR1097920
- [7] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part IIAnalyse Nonlin., Vol. 1, 1984, pp. 223-283. Zbl0704.49004MR778974
- [8] Y.J. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a. Comm. Partial Diff., Eq. Vol. 13, 1988, pp. 1499-1519. Zbl0702.35228
- [9] Y.J. Oh, Corrections to Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a., Comm. Partial Diff. Eq. Vol. 14, 1989, pp. 833-834. Zbl0714.35078
- [10] Y.J. Oh, On positive multi-lump bound states nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys., Vol. 131, 1990, pp. 223-253. Zbl0753.35097MR1065671
- [111 P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. angew Math Phys, Vol. 43, 1992, pp. 270-291. Zbl0763.35087MR1162728
- [12] G. Spradlin, Ph. D. ThesisUniversity of Wisconsin, 1994.
- [13] N. Thandi, Ph. D. ThesisUniversity of Wisconsin, 1995.
- [14] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys., Vol. 153, No 2, 1993, pp. 229-244. Zbl0795.35118MR1218300
Citations in EuDML Documents
top- Kimie Nakashima, Kazunaga Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
- Silvia Cingolani, Louis Jeanjean, Simone Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
- Silvia Cingolani, Louis Jeanjean, Simone Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
- Teresa D'Aprile, Angela Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
- Huirong Pi, Chunhua Wang, Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields
- Teresa D'Aprile, Juncheng Wei, Clustered solutions around harmonic centers to a coupled elliptic system
- Silvia Cingolani, Metodi variazionali e topologici nello studio delle equazioni di Schrödinger nonlineari agli stati stazionari
- Francesca Alessio, Piero Montecchiari, Multibump solutions for a class of lagrangian systems slowly oscillating at infinity
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, On the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.