Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres

Saad Baaj; Georges Skandalis

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 4, page 425-488
  • ISSN: 0012-9593

How to cite

top

Baaj, Saad, and Skandalis, Georges. "Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm {C}^*$-algèbres." Annales scientifiques de l'École Normale Supérieure 26.4 (1993): 425-488. <http://eudml.org/doc/82346>.

@article{Baaj1993,
author = {Baaj, Saad, Skandalis, Georges},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {locally compact quantum group; regularity; irreducibility; crossed products; Hilbert space; unitary operator; pentagone equation; operator algebras with duality; multiplicative unitary; dual Hopf - algebras; Takesaki-Takai duality; commutativity},
language = {fre},
number = {4},
pages = {425-488},
publisher = {Elsevier},
title = {Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm \{C\}^*$-algèbres},
url = {http://eudml.org/doc/82346},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Baaj, Saad
AU - Skandalis, Georges
TI - Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm {C}^*$-algèbres
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 4
SP - 425
EP - 488
LA - fre
KW - locally compact quantum group; regularity; irreducibility; crossed products; Hilbert space; unitary operator; pentagone equation; operator algebras with duality; multiplicative unitary; dual Hopf - algebras; Takesaki-Takai duality; commutativity
UR - http://eudml.org/doc/82346
ER -

References

top
  1. [1] E. ABE, Hopf algebras, Cambridge University Press, London, New York, 1977. 
  2. [2] S. BAAJ et G. SKANDALIS, C*-algèbres de Hopf et théorie de Kasparov équivariante. K-theory, vol. 2, 1989, p. 683-721. Zbl0683.46048MR90j:46061
  3. [3] N. BOURBAKI, Intégration, Chap. 7 à 8, Hermann, 1963. Zbl0156.03204
  4. [4] V. G. DRINFELD, Quantum Groups, Proc. ICM Berkeley, 1986, p. 798-820. Zbl0667.16003MR89f:17017
  5. [5] M. ENOCK, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac. I. J.F.A., vol. 26, 1977, p. 16-46. Zbl0366.46053MR57 #13513
  6. [6] M. ENOCK et J. M. SCHWARTZ, Une dualité dans les algèbres de von Neumann, Bull. S.M.F. Suppl. mémoire, vol. 44, 1975, p. 1-144. Zbl0343.46044MR56 #1091
  7. [7] M. ENOCK et J. M. SCHWARTZ, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac. II Publ. RIMS Kyoto Univ., vol. 16, n° 1, 1980, p. 189-232. Zbl0441.46056MR81m:46084
  8. [8] M. ENOCK et J. M. SCHWARTZ, Extension de la catégorie des algèbres de Kac, Ann. de l'Inst. Fourier, vol. 36, fasc. 1, 1986, p. 105-131. Zbl0586.43003MR88a:46076
  9. [9] M. ENOCK et J. M. SCHWARTZ, Algèbres de Kac moyennables. Pacific J. of Math., vol. 125, n° 2, 1986, p. 363-379. Zbl0597.43002MR88f:46126
  10. [10] J. ERNEST, Hopf von Neumann algebras. Proc. Conf. Funct. Anal. (Irvine, Calif.) Academic Press, 1967, p. 195-215. Zbl0219.43004MR36 #6956
  11. [11] L. VAN HEESWIJCK, Duality in the Theory of Crossed Products, Math. Scand, vol. 44, 1979, p. 313-329. Zbl0419.46042MR83d:46082
  12. [12] G. I. KAC, Ring Groups and the Duality Principle, Trans. Moscow Math. Soc., 1963, p. 291-339. Translated from Trudy Moskov. Mat. Ob., vol. 12, 1963, p. 259-301. Zbl0144.37902MR28 #164
  13. [13] G. I. KAC, Ring Groups and the Duality Principle II, Trans. Moscow Math. Soc., 1965, p. 94-126. Translated from Trudy Moskov. Math. Ob., vol. 13, 1965, p. 84-113. Zbl0162.45101
  14. [14] G. I. KAC, Certain arithmetic properties of ring groups, Funk. Anal. i. Prilozen, vol. 6, 1972, p. 88-90. Zbl0258.16007MR46 #3687
  15. [15] G. I. KAC et V. G. PALJUTKIN, Finite Group Rings, Trans. Moscow Math. Soc., 1966, p. 251-294. Translated from Trudy Moskov. Mat. Obsc., vol. 15, 1966, p. 224-261. Zbl0218.43005
  16. [16] G. I. KAC et V. G. PALJUTKIN, Example of Ring Groups Generated by Lie Groups (en russe) Ukr. Mat. J., vol. 16, 1, 1964, p. 99-105. MR31 #4857
  17. [17] G. I. KAC et L. I. VAINERMAN, Nonunimodular Ring-Groups and Hopf-von Neumann Algebras, Math. USSSR Sb., vol. 23, 1974, p. 185-214. Translated from Matem. Sb., vol. 94, (136), 1974, vol. 2, p. 194-225. Zbl0309.46052MR50 #536
  18. [18] Y. KATAYAMA, Takesaki's Duality for a Non Degenerate Coaction, Math. Scand., vol. 55, 1985, p. 141-151. Zbl0598.46042MR86b:46112
  19. [19] E. KIRCHBERG, Representation of Coinvolutive Hopf-W*-Algebras and Non Abelian Duality. Bull. Acad. Pol. Sc., vol. 25, 1977, p. 117-122. Zbl0417.46062MR56 #6415
  20. [20] M. G. KREIN, Hermitian-Positive Kernels in Homogeneous Spaces, Amer. Math. Soc. Transl., (2), vol. 34, 1963, p. 109-164. Translated from Ukr. Mat. Z., vol. 2, n° 1, 1950, p. 10-59. Zbl0131.12101MR12,719b
  21. [21] M. B. LANDSTAD, Duality Theory for Covariant Systems, Trans. A.M.S., vol. 248, 1979, p. 223-267. Zbl0397.46059MR80j:46107
  22. [22] M. B. LANDSTAD, Duality for Dual Covariance Algebras, Comm. Math. Phys., vol. 52, 1977, p. 191-202. Zbl0362.46046MR56 #8750
  23. [23] M. B. LANDSTAD, J. PHILLIPS, I. RAEBURN, C. E. SUTHERLAND, Representations of Crossed Products by Coactions and Principal Bundles. Trans. AMS, vol. 299, n° 2, 1987, p. 747-784. Zbl0722.46031MR88f:46127
  24. [24] G. W. MACKEY, Borel Structures in Groups and their Duals, Trans. A.M.S., vol. 85, 1957, p. 134-165. Zbl0082.11201MR19,752b
  25. [25] S. MAC LANE, Categories for the working mathematicians, GTM 5. Zbl0561.01017
  26. [26] S. MAC LANE, Natural Associativity and Commutativity, Rice Univ. Studies, vol. 49, 1963, p. 4-28. Zbl0244.18008MR30 #1160
  27. [27] S. H. MAJID, Non-Commutative Geometric Groups by a Bicrossproduct Construction : Hopf Algebras at the Planck Scale, Thesis, Harvard Univ, 1988. 
  28. [28] S. H. MAJID, Hopf von Neumann algebra Bicrossproducts, Kac Algebras Bicrossproducts, and the Classical Yang-Baxter Equation, J.F.A., vol. 95, n° 2, 1991, p. 291-319. Zbl0741.46033MR92b:46088
  29. [29] S. H. MAJID, Physics for Algebraists, Non-Commutative and Non-Cocommutative Hopf Algebras by a Bicrossproduct Construction, J. of Algebra, vol. 130, n° 1, 1990, p. 17-64. Zbl0694.16008MR91j:16050
  30. [30] G. MOORE and N. SEIBERG, Classical and Quantum Conformal Field Theory, Comm. Math. Phys., vol. 123, 1989, p. 177-254. Zbl0694.53074MR90e:81216
  31. [31] Y. NAKAGAMI, Dual Action on a von Neumann Algebra and Takesaki's Duality for a Locally Compact Group, Publ. R.I.M.S. Kyoto Univ., vol. 12, 1977, p. 727-775. Zbl0363.46062MR56 #16393
  32. [32] Y. NAKAGAMI and M. TAKESAKI, Duality for Crossed Products of von Neumann Algebras. Lect. Notes in Math., vol. 731, 1979. Zbl0423.46051MR81e:46053
  33. [33] G. K. PEDERSEN, C*-Algebras and their Automorphism Groups. Academic press, 1979. Zbl0416.46043MR81e:46037
  34. [34] P. PODLES et S. L. WORONOWICZ, Quantum Deformation of Lorentz Group, Comm. Math. Phys., vol. 130, 1990, p. 381-431. Zbl0703.22018MR91f:46100
  35. [35] M. A. RIEFFEL, Some Solvable Quantum Groups, Proc. Conf. Craiova Romania Sept. 1989 (à paraître). 
  36. [36] M. ROSSO, Comparaison des groupes SU(2) quantiques de Drinfeld et Woronowicz, C. R. Acad. Sci., vol. 304, 1987, p. 323-326. Zbl0617.16005MR88h:22033
  37. [37] M. ROSSO, Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif. Prépublication. Zbl0721.17013
  38. [38] J. M. SCHWARTZ, Sur la structure des algèbres de Kac I, J. Funct. Anal., vol. 34, 1979, p. 370-406. Zbl0431.46044MR83a:46072a
  39. [39] J. M. SCHWARTZ, Sur la structure des algèbres de Kac II, Proc. of the London Math. Soc., vol. 41, 1980, p. 465-480. Zbl0398.46050MR83a:46072b
  40. [40] W. F. STINESPRING, Integration theorems for gages and duality for unimodular groups, Trans. AMS, vol. 90, 1959, p. 15-56. Zbl0085.10202MR21 #1547
  41. [41] S. STRATILA, D. VOICULESCU et L. ZSIDO, On Crossed Products. I and II, Rev. Roumaine Math. P. et Appl., vol. 21, 1976, p. 1411-1449 et vol. 22, 1977, p. 83-117. Zbl0402.46038
  42. [42] H. TAKAI, On a Duality for Crossed Products of C*-Algebras, J.F.A., vol. 19, 1975, p. 25-39. Zbl0295.46088MR51 #1413
  43. [43] M. TAKESAKI, A Characterization of Group Algebras as a Converse of Tannaka-Stinespring-Tatsuuma Duality Theorem, Amer. J. of Math., vol. 91, 1969, p. 529-564. Zbl0182.18103MR39 #5752
  44. [44] M. TAKESAKI, Duality and von Neumann Algebras, L.N.M., vol. 247, 1972, p. 665-779. Zbl0238.46063MR53 #704
  45. [45] M. TAKESAKI, Duality for Crossed Products and the Structure of von Neumann Algebras of type III, Acta Math., vol. 131, 1973, p. 249-310. Zbl0268.46058MR55 #11068
  46. [46] M. TAKEUCHI, Matched Pairs of Groups and Bismash Products of Hopf Algebras, Comm. Algebra, vol. 9, n° 8, 1981, p. 841-882. Zbl0456.16011MR83f:16013
  47. [47] T. TANNAKA, Über den Dualität der nicht-kommutativen topologischen Gruppen, Tôhoku Math. J., vol. 45, 1938, p. 1-12. Zbl0020.00904JFM64.0362.01
  48. [48] N. TATSUUMA, A Duality Theorem for Locally Compact Groups, J. of Math. of Kyoto Univ., vol. 6, 1967, p. 187-293. Zbl0184.17402MR36 #313
  49. [49] L. I. VAINERMAN, Characterization of Dual Objects for Locally Compact Groups, Funct. Anal. Appl., vol. 8, 1974, p. 66-67. Translated from Funk. Anal. i. Prilozen, vol. 8, 1974, n° 1, p. 75-76. Zbl0312.22007MR49 #463
  50. [50] J. M. VALLIN, C*-algèbres de Hopf et C*-algèbres de Kac. Proc. London Math. Soc., (3), vol. 50, 1985, p. 131-174. Zbl0577.46063MR86f:46072
  51. [51] D. VOICULESCU, Amenability and Katz algebras. Algèbres d'opérateurs et leurs applications en physique mathématique. Colloques Internationaux, C.N.R.S., n° 274, 1977, p. 451-457. Zbl0503.46049MR83c:46065
  52. [52] A. WEIL, L'intégration dans les groupes topologiques et ses applications. Act. Sc. Ind., n° 1145, Hermann, Paris, 1953. 
  53. [53] S. L. WORONOWICZ, Twisted SU (2) group. An example of a non commutative differential calculus. Publ. R.I.M.S., vol. 23, 1987, p. 117-181. Zbl0676.46050MR88h:46130
  54. [54] S. L. WORONOWICZ, Compact Matrix Pseudogroups, Comm. Math. Phys., vol. 111, 1987, p. 613-665. Zbl0627.58034MR88m:46079
  55. [55] S. L. WORONOWICZ, Tannaka-Krein Duality for Compact Matrix Pseudogroups. Twisted SU (N) Group, Inv. Math., vol. 93, 1988. Zbl0664.58044MR90e:22033
  56. [56] S. L. WORONOWICZ, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys., vol. 122, 1989, p. 125-170. Zbl0751.58042MR90g:58010

Citations in EuDML Documents

top
  1. A. Van Daele, S. Van Keer, The Yang-Baxter and pentagon equation
  2. Saad Baaj, Étienne Blanchard, Georges Skandalis, Unitaires multiplicatifs en dimension finie et leurs sous-objets
  3. Johan Kustermans, Stefaan Vaes, Locally compact quantum groups
  4. Jean-Michel Vallin, Measured quantum groupoids associated with matched pairs of locally compact groupoids
  5. Shuzhou Wang, Problems in the theory of quantum groups
  6. Michel Enock, The unitary implementation of a measured quantum groupoid action
  7. Georges Skandalis, Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf
  8. Etienne Blanchard, Déformations de C * -algèbres de Hopf
  9. Benoît Collins, Martin boundary theory of some quantum random walks

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.