Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres
Annales scientifiques de l'École Normale Supérieure (1993)
- Volume: 26, Issue: 4, page 425-488
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBaaj, Saad, and Skandalis, Georges. "Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm {C}^*$-algèbres." Annales scientifiques de l'École Normale Supérieure 26.4 (1993): 425-488. <http://eudml.org/doc/82346>.
@article{Baaj1993,
author = {Baaj, Saad, Skandalis, Georges},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {locally compact quantum group; regularity; irreducibility; crossed products; Hilbert space; unitary operator; pentagone equation; operator algebras with duality; multiplicative unitary; dual Hopf - algebras; Takesaki-Takai duality; commutativity},
language = {fre},
number = {4},
pages = {425-488},
publisher = {Elsevier},
title = {Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm \{C\}^*$-algèbres},
url = {http://eudml.org/doc/82346},
volume = {26},
year = {1993},
}
TY - JOUR
AU - Baaj, Saad
AU - Skandalis, Georges
TI - Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm {C}^*$-algèbres
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 4
SP - 425
EP - 488
LA - fre
KW - locally compact quantum group; regularity; irreducibility; crossed products; Hilbert space; unitary operator; pentagone equation; operator algebras with duality; multiplicative unitary; dual Hopf - algebras; Takesaki-Takai duality; commutativity
UR - http://eudml.org/doc/82346
ER -
References
top- [1] E. ABE, Hopf algebras, Cambridge University Press, London, New York, 1977.
- [2] S. BAAJ et G. SKANDALIS, C*-algèbres de Hopf et théorie de Kasparov équivariante. K-theory, vol. 2, 1989, p. 683-721. Zbl0683.46048MR90j:46061
- [3] N. BOURBAKI, Intégration, Chap. 7 à 8, Hermann, 1963. Zbl0156.03204
- [4] V. G. DRINFELD, Quantum Groups, Proc. ICM Berkeley, 1986, p. 798-820. Zbl0667.16003MR89f:17017
- [5] M. ENOCK, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac. I. J.F.A., vol. 26, 1977, p. 16-46. Zbl0366.46053MR57 #13513
- [6] M. ENOCK et J. M. SCHWARTZ, Une dualité dans les algèbres de von Neumann, Bull. S.M.F. Suppl. mémoire, vol. 44, 1975, p. 1-144. Zbl0343.46044MR56 #1091
- [7] M. ENOCK et J. M. SCHWARTZ, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac. II Publ. RIMS Kyoto Univ., vol. 16, n° 1, 1980, p. 189-232. Zbl0441.46056MR81m:46084
- [8] M. ENOCK et J. M. SCHWARTZ, Extension de la catégorie des algèbres de Kac, Ann. de l'Inst. Fourier, vol. 36, fasc. 1, 1986, p. 105-131. Zbl0586.43003MR88a:46076
- [9] M. ENOCK et J. M. SCHWARTZ, Algèbres de Kac moyennables. Pacific J. of Math., vol. 125, n° 2, 1986, p. 363-379. Zbl0597.43002MR88f:46126
- [10] J. ERNEST, Hopf von Neumann algebras. Proc. Conf. Funct. Anal. (Irvine, Calif.) Academic Press, 1967, p. 195-215. Zbl0219.43004MR36 #6956
- [11] L. VAN HEESWIJCK, Duality in the Theory of Crossed Products, Math. Scand, vol. 44, 1979, p. 313-329. Zbl0419.46042MR83d:46082
- [12] G. I. KAC, Ring Groups and the Duality Principle, Trans. Moscow Math. Soc., 1963, p. 291-339. Translated from Trudy Moskov. Mat. Ob., vol. 12, 1963, p. 259-301. Zbl0144.37902MR28 #164
- [13] G. I. KAC, Ring Groups and the Duality Principle II, Trans. Moscow Math. Soc., 1965, p. 94-126. Translated from Trudy Moskov. Math. Ob., vol. 13, 1965, p. 84-113. Zbl0162.45101
- [14] G. I. KAC, Certain arithmetic properties of ring groups, Funk. Anal. i. Prilozen, vol. 6, 1972, p. 88-90. Zbl0258.16007MR46 #3687
- [15] G. I. KAC et V. G. PALJUTKIN, Finite Group Rings, Trans. Moscow Math. Soc., 1966, p. 251-294. Translated from Trudy Moskov. Mat. Obsc., vol. 15, 1966, p. 224-261. Zbl0218.43005
- [16] G. I. KAC et V. G. PALJUTKIN, Example of Ring Groups Generated by Lie Groups (en russe) Ukr. Mat. J., vol. 16, 1, 1964, p. 99-105. MR31 #4857
- [17] G. I. KAC et L. I. VAINERMAN, Nonunimodular Ring-Groups and Hopf-von Neumann Algebras, Math. USSSR Sb., vol. 23, 1974, p. 185-214. Translated from Matem. Sb., vol. 94, (136), 1974, vol. 2, p. 194-225. Zbl0309.46052MR50 #536
- [18] Y. KATAYAMA, Takesaki's Duality for a Non Degenerate Coaction, Math. Scand., vol. 55, 1985, p. 141-151. Zbl0598.46042MR86b:46112
- [19] E. KIRCHBERG, Representation of Coinvolutive Hopf-W*-Algebras and Non Abelian Duality. Bull. Acad. Pol. Sc., vol. 25, 1977, p. 117-122. Zbl0417.46062MR56 #6415
- [20] M. G. KREIN, Hermitian-Positive Kernels in Homogeneous Spaces, Amer. Math. Soc. Transl., (2), vol. 34, 1963, p. 109-164. Translated from Ukr. Mat. Z., vol. 2, n° 1, 1950, p. 10-59. Zbl0131.12101MR12,719b
- [21] M. B. LANDSTAD, Duality Theory for Covariant Systems, Trans. A.M.S., vol. 248, 1979, p. 223-267. Zbl0397.46059MR80j:46107
- [22] M. B. LANDSTAD, Duality for Dual Covariance Algebras, Comm. Math. Phys., vol. 52, 1977, p. 191-202. Zbl0362.46046MR56 #8750
- [23] M. B. LANDSTAD, J. PHILLIPS, I. RAEBURN, C. E. SUTHERLAND, Representations of Crossed Products by Coactions and Principal Bundles. Trans. AMS, vol. 299, n° 2, 1987, p. 747-784. Zbl0722.46031MR88f:46127
- [24] G. W. MACKEY, Borel Structures in Groups and their Duals, Trans. A.M.S., vol. 85, 1957, p. 134-165. Zbl0082.11201MR19,752b
- [25] S. MAC LANE, Categories for the working mathematicians, GTM 5. Zbl0561.01017
- [26] S. MAC LANE, Natural Associativity and Commutativity, Rice Univ. Studies, vol. 49, 1963, p. 4-28. Zbl0244.18008MR30 #1160
- [27] S. H. MAJID, Non-Commutative Geometric Groups by a Bicrossproduct Construction : Hopf Algebras at the Planck Scale, Thesis, Harvard Univ, 1988.
- [28] S. H. MAJID, Hopf von Neumann algebra Bicrossproducts, Kac Algebras Bicrossproducts, and the Classical Yang-Baxter Equation, J.F.A., vol. 95, n° 2, 1991, p. 291-319. Zbl0741.46033MR92b:46088
- [29] S. H. MAJID, Physics for Algebraists, Non-Commutative and Non-Cocommutative Hopf Algebras by a Bicrossproduct Construction, J. of Algebra, vol. 130, n° 1, 1990, p. 17-64. Zbl0694.16008MR91j:16050
- [30] G. MOORE and N. SEIBERG, Classical and Quantum Conformal Field Theory, Comm. Math. Phys., vol. 123, 1989, p. 177-254. Zbl0694.53074MR90e:81216
- [31] Y. NAKAGAMI, Dual Action on a von Neumann Algebra and Takesaki's Duality for a Locally Compact Group, Publ. R.I.M.S. Kyoto Univ., vol. 12, 1977, p. 727-775. Zbl0363.46062MR56 #16393
- [32] Y. NAKAGAMI and M. TAKESAKI, Duality for Crossed Products of von Neumann Algebras. Lect. Notes in Math., vol. 731, 1979. Zbl0423.46051MR81e:46053
- [33] G. K. PEDERSEN, C*-Algebras and their Automorphism Groups. Academic press, 1979. Zbl0416.46043MR81e:46037
- [34] P. PODLES et S. L. WORONOWICZ, Quantum Deformation of Lorentz Group, Comm. Math. Phys., vol. 130, 1990, p. 381-431. Zbl0703.22018MR91f:46100
- [35] M. A. RIEFFEL, Some Solvable Quantum Groups, Proc. Conf. Craiova Romania Sept. 1989 (à paraître).
- [36] M. ROSSO, Comparaison des groupes SU(2) quantiques de Drinfeld et Woronowicz, C. R. Acad. Sci., vol. 304, 1987, p. 323-326. Zbl0617.16005MR88h:22033
- [37] M. ROSSO, Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif. Prépublication. Zbl0721.17013
- [38] J. M. SCHWARTZ, Sur la structure des algèbres de Kac I, J. Funct. Anal., vol. 34, 1979, p. 370-406. Zbl0431.46044MR83a:46072a
- [39] J. M. SCHWARTZ, Sur la structure des algèbres de Kac II, Proc. of the London Math. Soc., vol. 41, 1980, p. 465-480. Zbl0398.46050MR83a:46072b
- [40] W. F. STINESPRING, Integration theorems for gages and duality for unimodular groups, Trans. AMS, vol. 90, 1959, p. 15-56. Zbl0085.10202MR21 #1547
- [41] S. STRATILA, D. VOICULESCU et L. ZSIDO, On Crossed Products. I and II, Rev. Roumaine Math. P. et Appl., vol. 21, 1976, p. 1411-1449 et vol. 22, 1977, p. 83-117. Zbl0402.46038
- [42] H. TAKAI, On a Duality for Crossed Products of C*-Algebras, J.F.A., vol. 19, 1975, p. 25-39. Zbl0295.46088MR51 #1413
- [43] M. TAKESAKI, A Characterization of Group Algebras as a Converse of Tannaka-Stinespring-Tatsuuma Duality Theorem, Amer. J. of Math., vol. 91, 1969, p. 529-564. Zbl0182.18103MR39 #5752
- [44] M. TAKESAKI, Duality and von Neumann Algebras, L.N.M., vol. 247, 1972, p. 665-779. Zbl0238.46063MR53 #704
- [45] M. TAKESAKI, Duality for Crossed Products and the Structure of von Neumann Algebras of type III, Acta Math., vol. 131, 1973, p. 249-310. Zbl0268.46058MR55 #11068
- [46] M. TAKEUCHI, Matched Pairs of Groups and Bismash Products of Hopf Algebras, Comm. Algebra, vol. 9, n° 8, 1981, p. 841-882. Zbl0456.16011MR83f:16013
- [47] T. TANNAKA, Über den Dualität der nicht-kommutativen topologischen Gruppen, Tôhoku Math. J., vol. 45, 1938, p. 1-12. Zbl0020.00904JFM64.0362.01
- [48] N. TATSUUMA, A Duality Theorem for Locally Compact Groups, J. of Math. of Kyoto Univ., vol. 6, 1967, p. 187-293. Zbl0184.17402MR36 #313
- [49] L. I. VAINERMAN, Characterization of Dual Objects for Locally Compact Groups, Funct. Anal. Appl., vol. 8, 1974, p. 66-67. Translated from Funk. Anal. i. Prilozen, vol. 8, 1974, n° 1, p. 75-76. Zbl0312.22007MR49 #463
- [50] J. M. VALLIN, C*-algèbres de Hopf et C*-algèbres de Kac. Proc. London Math. Soc., (3), vol. 50, 1985, p. 131-174. Zbl0577.46063MR86f:46072
- [51] D. VOICULESCU, Amenability and Katz algebras. Algèbres d'opérateurs et leurs applications en physique mathématique. Colloques Internationaux, C.N.R.S., n° 274, 1977, p. 451-457. Zbl0503.46049MR83c:46065
- [52] A. WEIL, L'intégration dans les groupes topologiques et ses applications. Act. Sc. Ind., n° 1145, Hermann, Paris, 1953.
- [53] S. L. WORONOWICZ, Twisted SU (2) group. An example of a non commutative differential calculus. Publ. R.I.M.S., vol. 23, 1987, p. 117-181. Zbl0676.46050MR88h:46130
- [54] S. L. WORONOWICZ, Compact Matrix Pseudogroups, Comm. Math. Phys., vol. 111, 1987, p. 613-665. Zbl0627.58034MR88m:46079
- [55] S. L. WORONOWICZ, Tannaka-Krein Duality for Compact Matrix Pseudogroups. Twisted SU (N) Group, Inv. Math., vol. 93, 1988. Zbl0664.58044MR90e:22033
- [56] S. L. WORONOWICZ, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys., vol. 122, 1989, p. 125-170. Zbl0751.58042MR90g:58010
Citations in EuDML Documents
top- A. Van Daele, S. Van Keer, The Yang-Baxter and pentagon equation
- Saad Baaj, Étienne Blanchard, Georges Skandalis, Unitaires multiplicatifs en dimension finie et leurs sous-objets
- Johan Kustermans, Stefaan Vaes, Locally compact quantum groups
- Jean-Michel Vallin, Measured quantum groupoids associated with matched pairs of locally compact groupoids
- Shuzhou Wang, Problems in the theory of quantum groups
- Michel Enock, The unitary implementation of a measured quantum groupoid action
- Georges Skandalis, Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf
- Etienne Blanchard, Déformations de -algèbres de Hopf
- Benoît Collins, Martin boundary theory of some quantum random walks
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.