A KAM-theorem for some nonlinear partial differential equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)
- Volume: 23, Issue: 1, page 119-148
- ISSN: 0391-173X
Access Full Article
topHow to cite
topPöschel, Jürgen. "A KAM-theorem for some nonlinear partial differential equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.1 (1996): 119-148. <http://eudml.org/doc/84221>.
@article{Pöschel1996,
author = {Pöschel, Jürgen},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {persistence of invariant tori; infinite dimensional Hamiltonian; KAM-theorem},
language = {eng},
number = {1},
pages = {119-148},
publisher = {Scuola normale superiore},
title = {A KAM-theorem for some nonlinear partial differential equations},
url = {http://eudml.org/doc/84221},
volume = {23},
year = {1996},
}
TY - JOUR
AU - Pöschel, Jürgen
TI - A KAM-theorem for some nonlinear partial differential equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 1
SP - 119
EP - 148
LA - eng
KW - persistence of invariant tori; infinite dimensional Hamiltonian; KAM-theorem
UR - http://eudml.org/doc/84221
ER -
References
top- [1] A.I. Bobenko - S.B. Kuksin, The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation, Comment. Math. Helv.70 (1995), 63-112. Zbl0842.35099MR1314941
- [2] L.H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci.15 (1988), 115-147. Zbl0685.58024MR1001032
- [3] S.B. Kuksin, Perturbation theory of conditionally periodic solutions of infinite dimensional Hamiltonian systems and its application to the Korteweg-de Vries equation, Mat. Sb.136 (1988); English transl. in Math. USSR-Sb.64 (1989), 397-413. Zbl0657.58033MR959490
- [4] S.B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics1556, Springer, Berlin, 1993. Zbl0784.58028MR1290785
- [5] S.B. Kuksin - J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (to appear). Zbl0847.35130MR1370761
- [6] P.D. Lax, Developement of singularities of solutions of nonlinear hyperbolic partial differential equation, J. Math. Phys.5 (1964), 611-613. Zbl0135.15101MR165243
- [7] J. Pöschel, On elliptic lower dimensional tori in Hamiltonian systems, Math. Z.202 (1989), 559-608. Zbl0662.58037MR1022821
- [8] J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv. (to appear). Zbl0866.35013MR1396676
- [9] H. Rüssmann, On an inequality for trigonometric polynomials in several variables, Analysis, et cetera (P.H. Rabinowitz and E. Zehnder, eds.), Academic Press, Boston, pp. 545-562. Zbl0695.42003MR1039361
- [10] C.E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys.127 (1990), 479-528. Zbl0708.35087MR1040892
Citations in EuDML Documents
top- Dario Bambusi, Lyapunov center theorem for some nonlinear PDE's : a simple proof
- Benoît Grébert, Recent results on KAM for multidimensional PDEs
- Massimiliano Berti, Quasi-periodic solutions of PDEs
- Massimiliano Berti, Luca Biasco, Michela Procesi, KAM theory for the hamiltonian derivative wave equation
- Sandro Graffi, Méthodes KAM pour les opérateurs de Schrödinger non autonomes
- Massimiliano Berti, Luca Biasco, Enrico Valdinoci, Periodic orbits close to elliptic tori and applications to the three-body problem
- Massimiliano Berti, Soluzioni periodiche di PDEs Hamiltoniane
- Dario Bambusi, Alberto Maspero, Sistemi integrabili infinito dimensionali e loro perturbazioni
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.