Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen

Manfred Krämer

Compositio Mathematica (1979)

  • Volume: 38, Issue: 2, page 129-153
  • ISSN: 0010-437X

How to cite

top

Krämer, Manfred. "Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen." Compositio Mathematica 38.2 (1979): 129-153. <http://eudml.org/doc/89398>.

@article{Krämer1979,
author = {Krämer, Manfred},
journal = {Compositio Mathematica},
keywords = {Subgroups of Lie Groups; Gelfand Pairs; Spherical Functions; Unitary Representation},
language = {ger},
number = {2},
pages = {129-153},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen},
url = {http://eudml.org/doc/89398},
volume = {38},
year = {1979},
}

TY - JOUR
AU - Krämer, Manfred
TI - Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen
JO - Compositio Mathematica
PY - 1979
PB - Sijthoff et Noordhoff International Publishers
VL - 38
IS - 2
SP - 129
EP - 153
LA - ger
KW - Subgroups of Lie Groups; Gelfand Pairs; Spherical Functions; Unitary Representation
UR - http://eudml.org/doc/89398
ER -

References

top
  1. [1] G. Beisel: Diplomarbeit. Bonn (1975). 
  2. [2] H. Boerner: Darstellungen von Gruppen. Springer, Berlin-Göttingen-Heidelberg (1955) Zbl0068.01603MR75211
  3. [3] C. Chevalley: Theory of Lie groups. Princeton University Press, Princeton (1946). Zbl0063.00842
  4. [4] C. Chevalley: The algebraic theory of spinors. Columbia University Press, New York (1954). Zbl0057.25901MR60497
  5. [5] E.B. Dynkin: Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, series 2, 6 (1957) 111-244. Zbl0077.03404
  6. [6] I. Gelfand: Spherical functions on symmetric Riemann spaces, Dokl. Akad. Nauk. SSSR, 70 (1950) 5-8. Zbl0139.07701MR33832
  7. [7] R. Godement: A theory of spherical functions, Transactions Am. Math. Soc., 73 (1952) 496-556. Zbl0049.20103MR52444
  8. [8] V. Hauschild: "Einige Folgerungen aus Kostants Multiplizitätenformel ". Diplomarbeit. Bonn (1970). 
  9. [9] S. Helgason: Differential geometry and symmetric spaces. Academic Press, New York-London (1962). Zbl0111.18101MR145455
  10. [10] W.-C. Hsiang and W.-Y. Hsiang: Differentiable actions of compact connected classical groups II, Ann. of Math., 92 (1970) 189-223. Zbl0205.53902MR265511
  11. [11] A.U. Klimyk: Decomposition of a direct product of irreducible representations..., Am. Journ. Math. Transl., series 2, 76 (1968) 63-73. Zbl0228.17004
  12. [12] M. Krämer: Über das Verhalten endlicher Untergruppen bei Darstellungen kompakter Liegruppen, Inventiones Math., 16 (1972) 15-39. Zbl0229.22023MR306406
  13. [13] M. Krämer: Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen, Math. Z., 147 (1976) 207-224. Zbl0314.22013MR404530
  14. [14] M. Krämer: Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen, Communic. in Algebra, 3 (1975) 691-737. Zbl0309.22013MR376965
  15. [15] M. Krämer: Multiplicity free subgroups of compact connected Lie groups, Archiv der Mathematik, 27 (1976) 28-36. Zbl0322.22011MR399373
  16. [16] J. Lepowsky: Multiplicity formulas for certain semi-simple Lie groups, Bull. Am. Math. Soc., 77 (1971) 601-604. Zbl0228.17003MR301142
  17. [17] O. Loos: Symmetric spaces, two volumes. Benjamin, New York-Amsterdam (1969). Zbl0175.48601
  18. [18] V.B. Mandeltsveig: Structure of G2-multiplets, Sov. J. Nucl. Phys. (1965). 
  19. [19] F. Mayer-Lindenberg: "Das Spektrum des Laplace-Operators auf kompakten Riemannschen symmetrischen Räumen". Diplomarbeit. Bonn (1972). 
  20. [20] A.P. Stone: Semi-simple subgroups of semi-simple groups, Journ. Math. Phys., 11 (1970) 29-38. Zbl0202.03001
  21. [21] M. Sugiura: Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan. Acad., 38 (1962) 111-113. Zbl0134.26901MR142689
  22. [22] J. Tits: Tabellen zu den einfachen Liegruppen und ihren Darstellungen. Lecture notes in Mathematics, 40, Springer, Berlin-Heidelberg -New York (1967). Zbl0166.29703MR218489
  23. [23] N.J. Vilenkin: Special functions and the theory of group representations, Translations of Mathematical Monographs22. AMS, Providence, R.I. (1968). Zbl0172.18404MR229863
  24. [24] D.P. Zhelobenko: The classical groups, spectral analysis of their finite dimensional representations, Russian Math. Surveys, 17 (1962) 1-94. Zbl0142.26703

Citations in EuDML Documents

top
  1. Ihor Mykytyuk, Anatoly Stepin, Classification of almost spherical pairs of compact simple Lie groups
  2. Franz Pauer, Sur les espaces homogènes de complication nulle
  3. M. Brion, Classification des espaces homogènes sphériques
  4. Friedrich Knop, Spherical roots of spherical varieties
  5. Gerhard Röhrle, On normal abelian subgroups in parabolic groups
  6. Ivan V. Losev, Proof of the Knop conjecture
  7. Paolo Bravi, Stéphanie Cupit-Foutou, Classification of strict wonderful varieties
  8. Paolo Bravi, Classification of spherical varieties
  9. Ivan Losev, Uniqueness properties for spherical varieties
  10. Dmitri Panyushev, On deformation method in invariant theory

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.