The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we introduce related comparability for exchange ideals. Let be an exchange ideal of a ring . If satisfies related comparability, then for any regular matrix , there exist left invertible and right invertible such that for idempotents .
An exchange ring is strongly separative provided that for all finitely generated projective right -modules and , . We prove that an exchange ring is strongly separative if and only if for any corner of , implies that there exist such that and if and only if for any corner of , implies that there exists a right invertible matrix . The dual assertions are also proved.
We characterize exchange rings having stable range one. An exchange ring has stable range one if and only if for any regular , there exist an and a such that and if and only if for any regular , there exist and such that if and only if for any , .
Let be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
A matrix is -clean provided there exists an idempotent such that and . We get a general criterion of -cleanness for the matrix . Under the -stable range condition, it is shown that is -clean iff . As an application, we prove that the -cleanness and unit-regularity for such matrix over a Dedekind domain coincide for all . The analogous for property is also obtained.
It is shown that a ring is a -ring if and only if there exists a complete orthogonal set of idempotents such that all are -rings. We also investigate -rings for Morita contexts, module extensions and power series rings.
In this paper, we prove that unit ideal-stable range condition is right and left symmetric.
In this paper we investigate the related comparability over exchange rings. It is shown that an exchange ring R satisfies the related comparability if and only if for any regular x C R, there exists a related unit w C R and a group G in R such that wx C G.
We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; ; where is a Boolean ring; local ring with nil Jacobson radical; or ; or the ring of a Morita context with zero pairings where the underlying rings are or .
A ring is (weakly) nil clean provided that every element in is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let be abelian, and let . We prove that is nil clean if and only if is Boolean and is nil. Furthermore, we prove that is weakly nil clean if and only if is periodic; is , or where is a Boolean ring, and that is weakly nil clean if and only if is nil clean for all .
A -ring is strongly 2-nil--clean if every element in is the sum of two projections and a nilpotent that commute. Fundamental properties of such -rings are obtained. We prove that a -ring is strongly 2-nil--clean if and only if for all , is strongly nil--clean, if and only if for any there exists a -tripotent such that is nilpotent and , if and only if is a strongly -clean SN ring, if and only if is abelian, is nil and is -tripotent. Furthermore, we explore the structure...
We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a matrix over a projective-free ring is strongly -clean if and only if , or , or is similar to , where , , and the equation has a root in and a root in . We further prove that is strongly -clean if be optimally -clean.
Download Results (CSV)