Integral Representation on BV (...) of ...-Limits of Variational Integrals.
Se il problema di minimo è il limite, in senso variazionale, di una successione di problemi di minimo con ostacoli del tipo allora può essere scritto nella forma dove è un conveniente rappresentante di e è una misura non negativa.
If the minimum problem () is the limit, in a variational sense, of a sequence of minimum problems with obstacles of the type then () can be written in the form without any additional constraint.
Se il problema di minimo è il limite, in senso variazionale, di una successione di problemi di minimo con ostacoli del tipo allora può essere scritto nella forma dove è un conveniente rappresentante di e è una misura non negativa.
If and are sequences of arbitrary functions from into , with , then there exist two subsequences and , a function convex in , and two positive Radon measures and , with , such that for every “admissible” open set and Borei set , with , and for every , the sequences and of the minima and of the minimum points of the functional with constraints of the type on , converge respectively to the minimum and to the minimum point of the functional without any additional...
If the minimum problem () is the limit, in a variational sense, of a sequence of minimum problems with obstacles of the type then () can be written in the form without any additional constraint.
We introduce the space of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for , which leads to a compactness result for the space of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational...
Page 1 Next