Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Mesures limites pour l’équation de Helmholtz dans le cas non captif

Jean-François Bony — 2009

Annales de la faculté des sciences de Toulouse Mathématiques

Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé C et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard....

Résonances près d’une énergie critique

Jean-François Bony — 2001

Séminaire Équations aux dérivées partielles

Dans cet exposé, on décrit un travail effectué sous la direction de J. Sjöstrand. On prouve des majorations et des minorations du nombre de résonances d’un opérateur de Schrödinger semi-classique P = - h 2 Δ + V ( x ) dans des petits disques centrés en E 0 > 0 , une valeur critique de p ( x , ξ ) = ξ 2 + V ( x ) .

Microlocalization of resonant states and estimates of the residue of the scattering amplitude

Jean-François BonyLaurent Michel — 2003

Journées équations aux dérivées partielles

We obtain some microlocal estimates of the resonant states associated to a resonance z 0 of an h -differential operator. More precisely, we show that the normalized resonant states are 𝒪 ( | Im z 0 | / h + h ) outside the set of trapped trajectories and are 𝒪 ( h ) in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound...

Local energy decay for several evolution equations on asymptotically euclidean manifolds

Jean-François BonyDietrich Häfner — 2012

Annales scientifiques de l'École Normale Supérieure

Let  P be a long range metric perturbation of the Euclidean Laplacian on  d , d 2 . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to  P . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group e i t f ( P ) where f has a suitable development at zero (resp. infinity).

Resonances and Spectral Shift Function near the Landau levels

Jean-François BonyVincent BruneauGeorgi Raikov — 2007

Annales de l’institut Fourier

We consider the 3D Schrödinger operator H = H 0 + V where H 0 = ( - i - A ) 2 - b , A is a magnetic potential generating a constant magneticfield of strength b > 0 , and V is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of H admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of H as the poles of this meromorphic extension. We study their distribution near any fixed...

Tunnel effect for semiclassical random walk

Jean-François BonyFrédéric HérauLaurent Michel — 2014

Journées Équations aux dérivées partielles

In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to 1 eigenvalues. This problem was studied in [] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the...

Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances

Jean-François BonySetsuro FujiiéThierry RamondMaher Zerzeri — 2011

Annales de l’institut Fourier

We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of h , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we...

Resolvent and Scattering Matrix at the Maximum of the Potential

Alexandrova, IvanaBony, Jean-FrançoisRamond, Thierry — 2008

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35P25, 81U20, 35S30, 47A10, 35B38. We study the microlocal structure of the resolvent of the semiclassical Schrödinger operator with short range potential at an energy which is a unique non-degenerate global maximum of the potential. We prove that it is a semiclassical Fourier integral operator quantizing the incoming and outgoing Lagrangian submanifolds associated to the fixed hyperbolic point. We then discuss two applications of this result...

Page 1

Download Results (CSV)