Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

Soluzioni periodiche di PDEs Hamiltoniane

Massimiliano Berti — 2004

Bollettino dell'Unione Matematica Italiana

Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando...

Heteroclinic solutions for perturbed second order systems

Massimiliano Berti — 1997

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The existence of infinitely many heteroclinic orbits implying a chaotic dynamics is proved for a class of perturbed second order Lagrangian systems possessing at least 2 hyperbolic equilibria.

Quasi-periodic solutions of PDEs

Massimiliano Berti

Séminaire Laurent Schwartz — EDP et applications

The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in 𝕋 d , d 2 , and the 1 - d derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.

Nonlinear vibrations of completely resonant wave equations

Massimiliano Berti — 2007

Banach Center Publications

We present recent existence results of small amplitude periodic and quasi-periodic solutions of completely resonant nonlinear wave equations. Both infinite-dimensional bifurcation phenomena and small divisors difficulties occur. The proofs rely on bifurcation theory, Nash-Moser implicit function theorems, dynamical systems techniques and variational methods.

Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium

Massimiliano BertiPhilippe Bolle — 1998

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider autonomous Lagrangian systems possessing two homoclinic orbits to an hyperbolic equilibrium of saddle-saddle type with two different characteristic exponents. Under a nondegeneracy assumption on the homoclinics and under suitable conditions on the geometric behaviour of these homoclinics near the equilibrium we show, by variational methods, that they give rise to an infinite family of multibump homoclinic solutions. We relax the nondegeneracy assumption when the two characteristic exponents...

Quasi-periodic oscillations for wave equations under periodic forcing

Massimiliano BertiMichela Procesi — 2005

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced, nonlinear wave equations with periodic spatial boundary conditions is established. We consider both the cases the forcing frequency is (Case A) a rational number and (Case B) an irrational number.

Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems

Massimiliano BertiPhilippe Bolle — 2000

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincaré-Melnikov function.

Periodic solutions of nonlinear wave equations with non-monotone forcing terms

Massimiliano BertiLuca Biasco — 2005

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the reduced action functional, through techniques inspired by regularity theory...

Quasi-periodic solutions with Sobolev regularity of NLS on 𝕋 d with a multiplicative potential

Massimiliano BertiPhilippe Bolle — 2013

Journal of the European Mathematical Society

We prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplicative potential on 𝕋 d , d 1 , finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are C then the solutions are C . The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized operators...

Bifurcation of free vibrations for completely resonant wave equations

Massimiliano BertiPhilippe Bolle — 2004

Bollettino dell'Unione Matematica Italiana

We prove existence of small amplitude, 2p/v-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency ω belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.

Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano BertiLuca BiascoEnrico Valdinoci — 2004

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...

Optimal stability and instability results for a class of nearly integrable Hamiltonian systems

Massimiliano BertiLuca BiascoPhilippe Bolle — 2002

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) O µ -perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time T d = O 1 / μ log 1 / μ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time T d is optimal as a consequence of a general stability result proved via classical perturbation...

Page 1

Download Results (CSV)