The algebra of compact operators does not have any finite-codimensional ideal
Soit une algèbre de von Neumann finie. Nous montrons que l’espace des sommes finies de commutateurs de coïncide avec le noyau de la trace centrale. Si est un facteur, il en résulte par exemple que tout élément est une combinaison linéaire finie de projecteurs de dimension . Nous montrons aussi dans ce cas que le groupe dérivé de coïncide avec le noyau du déterminant de Fuglede-Kadison.
Soient une -algèbre approximativement finie simple avec unité, le groupe des inversibles et le groupe des unitaires de . Nous avons défini dans un précédent travail un homomorphisme , appelé déterminant universel de , de sur un groupe abélien associé à . Nous montrons ici que, pour qu’un élément dans ou dans soit produit d’un nombre fini de commutateurs, il (faut et il) suffit que Ceci permet en particulier d’identifier le noyau de la projection canonique On établit aussi...
Soient une algèbre de Banach complexe, le groupe général linéaire stable de et sa composante connexe pour la topologie normique. Nous montrons que toute trace non nulle permet de définir un homomorphisme de sur le quotient du groupe additif par l’image du groupe de Grothendieck de . Si (respectivement si est un facteur fini continu) avec la trace usuelle, alors est le déterminant usuel (resp. est celui de Fuglede et Kadison). Dans le cas général, les déterminants permettent...
Let be a non-trivial knot in the -sphere, its exterior, its group, and its peripheral subgroup. We show that is malnormal in , namely that for any with , unless is in one of the following three classes: torus knots, cable knots, and composite knots; these are exactly the classes for which there exist annuli in attached to which are not boundary parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral subgroups in the fundamental group of a...
Soit une application d’un groupe dans le groupe des opérateurs unitaires sur un espace de Hilbert. Si est un opérateur compact pour tous , quelles sont les obstructions à l’existence d’un homomorphisme avec compact pour tout ? Nous étudions ici les cas où est une somme amalgamée de groupes finis et où est un produit semi-direct d’un groupe fini par .
Étant donnés un système de racines d’une des familles A, B, C, D, F, G et le groupe abélien libre qu’il engendre, on calcule explicitement la série de croissance de ce groupe relativement à Les résultats s’interprètent en termes du polynôme d’Ehrhart de l’enveloppe convexe de .
Malnormal subgroups occur in various contexts. We review a large number of examples, and compare the general situation to that of finite Frobenius groups of permutations.
In a companion paper [
Nous proposons une caractérisation géométrique des variétés de dimension ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type : ce sont essentiellement les -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient une -variété connexe compacte et son groupe fondamental, qu’on suppose être infini et avec...
Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.
Page 1