Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal.
We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.
It is known that there are only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Here, we determine all the imaginary cyclic sextic fields with class numbers equal to their genus class numbers.
Lately, explicit upper bounds on (for primitive Dirichlet characters ) taking into account the behaviors of on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other...
Let k ≥ 1 denote any positive rational integer. We give formulae for the sums (where χ ranges over the ϕ(f)/2 odd Dirichlet characters modulo f > 2) whenever k ≥ 1 is odd, and for the sums (where χ ranges over the ϕ(f)/2 even Dirichlet characters modulo f>2) whenever k ≥ 1 is even.
Il est connu (voir [1], [3]) que lorsque χ varie parmi les caractères de Dirichlet non quadratiques, nous avons . Nous montrons ici qu’en se restreignant aux caractères d’ordre impair donné, nous avons . Il serait évidemment bien plus satisfaisant de parvenir à prouver un tel résultat sans restreindre χ à varier parmi des caractères d’ordre fixé. Pour les caractères d’ordre pair, nous ne pouvons établir un tel résultat qu’en nous restreignant aux caractères pour lesquels les conducteurs de restent...
Page 1 Next