The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The zeros of functions of finite order in C n

Inequalities concerning polar derivative of polynomials

Arty Ahuja, K. K. Dewan, Sunil Hans (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper we obtain certain results for the polar derivative of a polynomial p ( z ) = c n z n + j = μ n c n - j z n - j , 1 μ n , having all its zeros on | z | = k , k 1 , which generalizes the results due to Dewan and Mir, Dewan and Hans. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros. [Editor’s note: There are flaws in the paper, see M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2), (2013),...

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.

Uniqueness results for differential polynomials sharing a set

Soniya Sultana, Pulak Sahoo (2025)

Mathematica Bohemica

Similarity:

We investigate the uniqueness results of meromorphic functions if differential polynomials of the form ( Q ( f ) ) ( k ) and ( Q ( g ) ) ( k ) share a set counting multiplicities or ignoring multiplicities, where Q is a polynomial of one variable. We give suitable conditions on the degree of Q and on the number of zeros and the multiplicities of the zeros of Q ' . The results of the paper generalize some results due to T. T. H. An and N. V. Phuong (2017) and that of N. V. Phuong (2021).

Characterization of functions whose forward differences are exponential polynomials

J. M. Almira (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given { h 1 , , h t } a finite subset of d , we study the continuous complex valued functions and the Schwartz complex valued distributions f defined on d with the property that the forward differences Δ h k m k f are (in distributional sense) continuous exponential polynomials for some natural numbers m 1 , , m t .

Some results on derangement polynomials

Mehdi Hassani, Hossein Moshtagh, Mohammad Ghorbani (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study moments of the difference D n ( x ) - x n n ! e - 1 / x concerning derangement polynomials D n ( x ) . For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for x > 0 . For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.

Zeros of solutions of certain higher order linear differential equations

Hong-Yan Xu, Cai-Feng Yi (2010)

Annales Polonici Mathematici

Similarity:

We investigate the exponent of convergence of the zero-sequence of solutions of the differential equation f ( k ) + a k - 1 ( z ) f ( k - 1 ) + + a ( z ) f ' + D ( z ) f = 0 , (1) where D ( z ) = Q ( z ) e P ( z ) + Q ( z ) e P ( z ) + Q ( z ) e P ( z ) , P₁(z),P₂(z),P₃(z) are polynomials of degree n ≥ 1, Q₁(z),Q₂(z),Q₃(z), a j ( z ) (j=1,..., k-1) are entire functions of order less than n, and k ≥ 2.

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Similarity:

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Linear maps preserving elements annihilated by the polynomial X Y - Y X

Jianlian Cui, Jinchuan Hou (2006)

Studia Mathematica

Similarity:

Let H and K be complex complete indefinite inner product spaces, and ℬ(H,K) (ℬ(H) if K = H) the set of all bounded linear operators from H into K. For every T ∈ ℬ(H,K), denote by T the indefinite conjugate of T. Suppose that Φ: ℬ(H) → ℬ(K) is a bijective linear map. We prove that Φ satisfies Φ ( A ) Φ ( B ) = Φ ( B ) Φ ( A ) for all A, B ∈ ℬ(H) with A B = B A if and only if there exist a nonzero real number c and a generalized indefinite unitary operator U ∈ ℬ(H,K) such that Φ ( A ) = c U A U for all A ∈ ℬ(H).

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

A note on the number of zeros of polynomials in an annulus

Xiangdong Yang, Caifeng Yi, Jin Tu (2011)

Annales Polonici Mathematici

Similarity:

Let p(z) be a polynomial of the form p ( z ) = j = 0 n a j z j , a j - 1 , 1 . We discuss a sufficient condition for the existence of zeros of p(z) in an annulus z ∈ ℂ: 1 - c < |z| < 1 + c, where c > 0 is an absolute constant. This condition is a combination of Carleman’s formula and Jensen’s formula, which is a new approach in the study of zeros of polynomials.

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

On a sum involving the integral part function

Bo Chen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let [ t ] be the integral part of a real number t , and let f be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum S f ( x ) = n x f ( [ x / n ] ) , which improves the recent result of J. Stucky (2022).

Entire functions of exponential type not vanishing in the half-plane z > k , where k > 0

Mohamed Amine Hachani (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let P ( z ) be a polynomial of degree n having no zeros in | z | < k , k 1 , and let Q ( z ) : = z n P ( 1 / z ¯ ) ¯ . It was shown by Govil that if max | z | = 1 | P ' ( z ) | and max | z | = 1 | Q ' ( z ) | are attained at the same point of the unit circle | z | = 1 , then max | z | = 1 | P ' ( z ) | n 1 + k n max | z | = 1 | P ( z ) | . The main result of the present article is a generalization of Govil’s polynomial inequality to a class of entire functions of exponential type.

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Similarity:

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁...

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

Similarity:

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x)...