Displaying similar documents to “Tenseness of Riemannian flows”

A Weitzenbôck formula for the second fundamental form of a Riemannian foliation

Paolo Piccinni (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si considera la seconda forma fondamentale α di foliazioni su varietà riemanniane e si ottiene una formula per il laplaciano 2 α - Se ne deducono alcune implicazioni per foliazioni su varietà a curvatura costante.

Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions

Yaning Wang, Ximin Liu (2014)

Annales Polonici Mathematici

Similarity:

We consider an almost Kenmotsu manifold M 2 n + 1 with the characteristic vector field ξ belonging to the (k,μ)’-nullity distribution and h’ ≠ 0 and we prove that M 2 n + 1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, provided that M 2 n + 1 is ξ-Riemannian-semisymmetric. Moreover, if M 2 n + 1 is a ξ-Riemannian-semisymmetric almost Kenmotsu manifold such that ξ belongs to the (k,μ)-nullity distribution, we prove...

A Weitzenbôck formula for the second fundamental form of a Riemannian foliation

Paolo Piccinni (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si considera la seconda forma fondamentale α di foliazioni su varietà riemanniane e si ottiene una formula per il laplaciano 2 α - Se ne deducono alcune implicazioni per foliazioni su varietà a curvatura costante.

Collapse of warped submersions

Szymon M. Walczak (2006)

Annales Polonici Mathematici

Similarity:

We generalize the concept of warped manifold to Riemannian submersions π: M → B between two compact Riemannian manifolds ( M , g M ) and ( B , g B ) in the following way. If f: B → (0,∞) is a smooth function on B which is extended to a function f̂ = f ∘ π constant along the fibres of π then we define a new metric g f on M by g f | × g M | × , g f | × T M ̂ f ̂ ² g M | × T M ̂ , where and denote the bundles of horizontal and vertical vectors. The manifold ( M , g f ) obtained that way is called a warped submersion. The function f is called a warping function. We show...

On G -sets and isospectrality

Ori Parzanchevski (2013)

Annales de l’institut Fourier

Similarity:

We study finite G -sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If M is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then M has isospectral non-isometric covers.

Groups of C r , s -diffeomorphisms related to a foliation

Jacek Lech, Tomasz Rybicki (2007)

Banach Center Publications

Similarity:

The notion of a C r , s -diffeomorphism related to a foliation is introduced. A perfectness theorem for the group of C r , s -diffeomorphisms is proved. A remark on C n + 1 -diffeomorphisms is given.

The Killing Tensors on an n -dimensional Manifold with S L ( n , ) -structure

Sergey E. Stepanov, Irina I. Tsyganok, Marina B. Khripunova (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an n -dimensional differentiable manifold M endowed with an equiaffine S L ( n , ) -structure and discuss possible applications of obtained results in Riemannian geometry.

Generalized gradient flow and singularities of the Riemannian distance function

Piermarco Cannarsa (2012-2013)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

Significant information about the topology of a bounded domain Ω of a Riemannian manifold M is encoded into the properties of the distance, d Ω , from the boundary of Ω . We discuss recent results showing the invariance of the singular set of the distance function with respect to the generalized gradient flow of d Ω , as well as applications to homotopy equivalence.

Minimal, rigid foliations by curves on n

Frank Loray, Julio C. Rebelo (2003)

Journal of the European Mathematical Society

Similarity:

We prove the existence of minimal and rigid singular holomorphic foliations by curves on the projective space n for every dimension n 2 and every degree d 2 . Precisely, we construct a foliation which is induced by a homogeneous vector field of degree d , has a finite singular set and all the regular leaves are dense in the whole of n . Moreover, satisfies many additional properties expected from chaotic dynamics and is rigid in the following sense: if is conjugate to another holomorphic...

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

Similarity:

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s < 1 , under some bilinear Strichartz assumption. We will find some s ˜ < 1 , such that the solution is global for s > s ˜ .

Riemannian geometries on spaces of plane curves

Peter W. Michor, David Mumford (2006)

Journal of the European Mathematical Society

Similarity:

We study some Riemannian metrics on the space of smooth regular curves in the plane, viewed as the orbit space of maps from S 1 to the plane modulo the group of diffeomorphisms of S 1 , acting as reparametrizations. In particular we investigate the metric, for a constant A > 0 , G c A ( h , k ) : = S 1 ( 1 + A κ c ( θ ) 2 ) h ( θ ) , k ( θ ) | c ' ( θ ) | d θ where κ c is the curvature of the curve c and h , k are normal vector fields to c . The term A κ 2 is a sort of geometric Tikhonov regularization because, for A = 0 , the geodesic distance between any two distinct curves is 0, while...

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh (2016)

Mathematica Bohemica

Similarity:

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures ( g , ± ω ) with constant scalar curvature is either Einstein, or the dual field of ω is Killing. Next, let ( M n , g ) be a complete and connected Riemannian manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures ( g , ± ω ) . Then the Einstein-Weyl vector field E (dual to the 1 -form ω ) generates an infinitesimal harmonic transformation if and only if E is Killing.

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

On 2 p -dimensional Riemannian manifolds with positive scalar curvature

Domenico Perrone (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione 2 p . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.

Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability

Marco L. A. Velásquez, André F. A. Ramalho, Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold M ¯ f n + 1 endowed with a weight function f and having a closed conformal Killing vector field V with conformal factor ψ V , that is, graphs constructed through the flow generated by V and which are defined over an integral leaf of the foliation V orthogonal to V . For such graphs, we establish some rigidity results under appropriate constraints on the f -mean curvature. Afterwards, we obtain some stability...

Growth of a primitive of a differential form

Jean-Claude Sikorav (2001)

Bulletin de la Société Mathématique de France

Similarity:

For an exact differential form on a Riemannian manifold to have a primitive bounded by a given function f , by Stokes it has to satisfy some weighted isoperimetric inequality. We show the converse up to some constants if M has bounded geometry. For a volume form, it suffices to have the inequality ( | Ω | Ω f d σ for every compact domain Ω M ). This implies in particular the “well-known” result that if M is the universal covering of a compact Riemannian manifold with non-amenable fundamental group, then...

Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations

Andreas Höring (2014)

Annales de l’institut Fourier

Similarity:

Let X be a normal projective variety, and let A be an ample Cartier divisor on X . Suppose that X is not the projective space. We prove that the twisted cotangent sheaf Ω X A is generically nef with respect to the polarisation  A . As an application we prove a Kobayashi-Ochiai theorem for foliations: if T X is a foliation such that det i A , then i is at most the rank of .

Foliations by curves with curves as singularities

M. Corrêa Jr, A. Fernández-Pérez, G. Nonato Costa, R. Vidal Martins (2014)

Annales de l’institut Fourier

Similarity:

Let be a holomorphic one-dimensional foliation on n such that the components of its singular locus Σ are curves C i and points p j . We determine the number of p j , counted with multiplicities, in terms of invariants of and C i , assuming that is special along the C i . Allowing just one nonzero dimensional component on Σ , we also prove results on when the foliation happens to be determined by its singular locus.

Deformations of Metrics and Biharmonic Maps

Aicha Benkartab, Ahmed Mohammed Cherif (2020)

Communications in Mathematics

Similarity:

We construct biharmonic non-harmonic maps between Riemannian manifolds ( M , g ) and ( N , h ) by first making the ansatz that ϕ : ( M , g ) ( N , h ) be a harmonic map and then deforming the metric on N by h ˜ α = α h + ( 1 - α ) d f d f to render ϕ biharmonic, where f is a smooth function with gradient of constant norm on ( N , h ) and α ( 0 , 1 ) . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .