Displaying similar documents to “Diophantine approximations with Fibonacci numbers”

A note on the article by F. Luca “On the system of Diophantine equations a ² + b ² = ( m ² + 1 ) r and a x + b y = ( m ² + 1 ) z ” (Acta Arith. 153 (2012), 373-392)

Takafumi Miyazaki (2014)

Acta Arithmetica

Similarity:

Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying A + B ( - 1 ) = ( m + ( - 1 ) ) r . We prove that the Diophantine equation | A | x + | B | y = ( m ² + 1 ) z has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever r > 10 74 or m > 10 34 . Our result is an explicit refinement of a theorem due to F. Luca.

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

Similarity:

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

A note on the weighted Khintchine-Groshev Theorem

Mumtaz Hussain, Tatiana Yusupova (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let W ( m , n ; ψ ̲ ) denote the set of ψ 1 , ... , ψ n –approximable points in m n . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions ψ ̲ . Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of m and n . It can not be removed for m = n = 1 as Duffin–Schaeffer provided the counter example. We deal with the only remaining case m = 2 and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem. ...

The number of solutions to the generalized Pillai equation ± r a x ± s b y = c .

Reese Scott, Robert Styer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider N , the number of solutions ( x , y , u , v ) to the equation ( - 1 ) u r a x + ( - 1 ) v s b y = c in nonnegative integers x , y and integers u , v { 0 , 1 } , for given integers a > 1 , b > 1 , c > 0 , r > 0 and s > 0 . When gcd ( r a , s b ) = 1 , we show that N 3 except for a finite number of cases all of which satisfy max ( a , b , r , s , x , y ) < 2 · 10 15 for each solution; when gcd ( a , b ) > 1 , we show that N 3 except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving N = 3 solutions.

Finiteness results for Diophantine triples with repdigit values

Attila Bérczes, Florian Luca, István Pink, Volker Ziegler (2016)

Acta Arithmetica

Similarity:

Let g ≥ 2 be an integer and g be the set of repdigits in base g. Let g be the set of Diophantine triples with values in g ; that is, g is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set g . We prove effective finiteness results for the set g .

On systems of diophantine equations with a large number of solutions

Jerzy Browkin (2010)

Colloquium Mathematicae

Similarity:

We consider systems of equations of the form x i + x j = x k and x i · x j = x k , which have finitely many integer solutions, proposed by A. Tyszka. For such a system we construct a slightly larger one with much more solutions than the given one.

On C * -spaces

P. Srivastava, K. K. Azad (1981)

Matematički Vesnik

Similarity:

Approximation properties of β-expansions

Simon Baker (2015)

Acta Arithmetica

Similarity:

Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence ( ϵ i ) i = 1 0 , 1 a β-expansion for x if x = i = 1 ϵ i β - i . We call a finite sequence ( ϵ i ) i = 1 n 0 , 1 n an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes. Given Ψ : 0 , we introduce the following subset of ℝ: W β ( Ψ ) : = m = 1 n = m ( ϵ i ) i = 1 n 0 , 1 n [ i = 1 n ( ϵ i ) / ( β i ) , i = 1 n ( ϵ i ) / ( β i ) + Ψ ( n ) ] In other words, W β ( Ψ ) is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities 0 x - i = 1 n ( ϵ i ) / ( β i ) Ψ ( n ) . When n = 1 2 n Ψ ( n ) < , the Borel-Cantelli lemma tells us that the Lebesgue measure...