Displaying similar documents to “Mean field limit for the one dimensional Vlasov-Poisson equation”

On the global regularity of subcritical Euler–Poisson equations with pressure

Eitan Tadmor, Dongming Wei (2008)

Journal of the European Mathematical Society

Similarity:

We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ -law pressure, γ 1 , admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2 × 2 p -system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann invariants and density crosses an intrinsic critical threshold.

A note on discriminating Poisson processes from other point processes with stationary inter arrival times

Gusztáv Morvai, Benjamin Weiss (2019)

Kybernetika

Similarity:

We give a universal discrimination procedure for determining if a sample point drawn from an ergodic and stationary simple point process on the line with finite intensity comes from a homogeneous Poisson process with an unknown parameter. Presented with the sample on the interval [ 0 , t ] the discrimination procedure g t , which is a function of the finite subsets of [ 0 , t ] , will almost surely eventually stabilize on either POISSON or NOTPOISSON with the first alternative occurring if and only if the...

Poisson's equation and characterizations of reflexivity of Banach spaces

Vladimir P. Fonf, Michael Lin, Przemysław Wojtaszczyk (2011)

Colloquium Mathematicae

Similarity:

Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality x X : s u p n | | k = 1 n T k x | | < = (I-T)X . We then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup T t : t 0 with generator A satisfies A X = x X : s u p s > 0 | | 0 s T t x d t | | < . The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities...

Canonical Poisson-Nijenhuis structures on higher order tangent bundles

P. M. Kouotchop Wamba (2014)

Annales Polonici Mathematici

Similarity:

Let M be a smooth manifold of dimension m>0, and denote by S c a n the canonical Nijenhuis tensor on TM. Let Π be a Poisson bivector on M and Π T the complete lift of Π on TM. In a previous paper, we have shown that ( T M , Π T , S c a n ) is a Poisson-Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from M to T r M have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on T A M are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002),...

On a deformed version of the two-disk dynamo system

Cristian Lăzureanu, Camelia Petrişor, Ciprian Hedrea (2021)

Applications of Mathematics

Similarity:

We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze...

Prolongation of Poisson 2 -form on Weil bundles

Norbert Mahoungou Moukala, Basile Guy Richard Bossoto (2016)

Archivum Mathematicum

Similarity:

In this paper, M denotes a smooth manifold of dimension n , A a Weil algebra and M A the associated Weil bundle. When ( M , ω M ) is a Poisson manifold with 2 -form ω M , we construct the 2 -Poisson form ω M A A , prolongation on M A of the 2 -Poisson form ω M . We give a necessary and sufficient condition for that M A be an A -Poisson manifold.

The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras

K. R. Goodearl, S. Launois (2011)

Bulletin de la Société Mathématique de France

Similarity:

The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum...

Involutivity of truncated microsupports

Masaki Kashiwara, Térésa Monteiro Fernandes, Pierre Schapira (2003)

Bulletin de la Société Mathématique de France

Similarity:

Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf F on a real manifold and k , if two functions vanish on SS k ( F ) , then so does their Poisson bracket.

Kontsevich Deformation Quantization on Lie Algebras

Nabiha Ben Amar, Mouna Chaabouni, Mabrouka Hfaiedh (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We consider Kontsevich star product on the dual 𝔤 * of a general Lie algebra g equipped with the linear Poisson bracket. We show that this star product provides a deformation quantization by partial embeddings in the direction of the Poisson bracket.

Cauchy-Poisson transform and polynomial inequalities

Mirosław Baran (2009)

Annales Polonici Mathematici

Similarity:

We apply the Cauchy-Poisson transform to prove some multivariate polynomial inequalities. In particular, we show that if the pluricomplex Green function of a fat compact set E in N is Hölder continuous then E admits a Szegö type inequality with weight function d i s t ( x , E ) - ( 1 - κ ) with a positive κ. This can be viewed as a (nontrivial) generalization of the classical result for the interval E = [-1,1] ⊂ ℝ.

About a Variant of the 1 d Vlasov equation, dubbed “Vlasov-Dirac-Benney Equation"

Claude Bardos (2012-2013)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

This is a report on project initiated with Anne Nouri [3], presently in progress, with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full non linear problem and also on natural connections with several other equations of mathematical physic.

GCD sums from Poisson integrals and systems of dilated functions

Christoph Aistleitner, István Berkes, Kristian Seip (2015)

Journal of the European Mathematical Society

Similarity:

Upper bounds for GCD sums of the form k , = 1 N ( gcd ( n k , n ) ) 2 α ( n k n ) α are established, where ( n k ) 1 k N is any sequence of distinct positive integers and 0 < α 1 ; the estimate for α = 1 / 2 solves in particular a problem of Dyer and Harman from 1986, and the estimates are optimal except possibly for α = 1 / 2 . The method of proof is based on identifying the sum as a certain Poisson integral on a polydisc; as a byproduct, estimates for the largest eigenvalues of the associated GCD matrices are also found. The bounds for such GCD sums are used to...

One-parameter contractions of Lie-Poisson brackets

Oksana Yakimova (2014)

Journal of the European Mathematical Society

Similarity:

We consider contractions of Lie and Poisson algebras and the behaviour of their centres under contractions. A polynomial Poisson algebra 𝒜 = 𝕂 [ 𝔸 n ] is said to be of Kostant type, if its centre Z ( 𝒜 ) is freely generated by homogeneous polynomials F 1 , ... , F r such that they give Kostant’s regularity criterion on 𝔸 n ( d x F i are linear independent if and only if the Poisson tensor has the maximal rank at x ). If the initial Poisson algebra is of Kostant type and F i satisfy a certain degree-equality, then the contraction...

A Hardy space related to the square root of the Poisson kernel

Jonatan Vasilis (2010)

Studia Mathematica

Similarity:

A real-valued Hardy space H ¹ ( ) L ¹ ( ) related to the square root of the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger than its classical counterpart H¹(). A decreasing function is in H ¹ ( ) if and only if the function is in the Orlicz space LloglogL(). In contrast to the case of H¹(), there is no such characterization for general positive functions: every Orlicz space strictly larger than L log L() contains positive functions which do not belong to H ¹ ( ) , and no Orlicz...

Noncommutative del Pezzo surfaces and Calabi-Yau algebras

Pavel Etingof, Victor Ginzburg (2010)

Journal of the European Mathematical Society

Similarity:

The hypersurface in 3 with an isolated quasi-homogeneous elliptic singularity of type E ˜ r , r = 6 , 7 , 8 , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type E r provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra [ x 1 , x 2 , x 3 ] to a noncommutative algebra with generators x 1 , x 2 , x 3 and the following 3 relations...

The evolution and Poisson kernels on nilpotent meta-abelian groups

Richard Penney, Roman Urban (2013)

Studia Mathematica

Similarity:

Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to k , k>1. We consider a class of second order left-invariant differential operators on S of the form α = L a + Δ α , where α k , and for each a k , L a is left-invariant second order differential operator on N and Δ α = Δ - α , , where Δ is the usual Laplacian on k . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively)...

On a modification of the Poisson integral operator

Dariusz Partyka (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Given a quasisymmetric automorphism γ of the unit circle 𝕋 we define and study a modification P γ of the classical Poisson integral operator in the case of the unit disk 𝔻 . The modification is done by means of the generalized Fourier coefficients of γ . For a Lebesgue’s integrable complexvalued function f on 𝕋 , P γ [ f ] is a complex-valued harmonic function in 𝔻 and it coincides with the classical Poisson integral of f provided γ is the identity mapping on 𝕋 . Our considerations are motivated by...

Quantization of Drinfeld Zastava in type A

Michael Finkelberg, Leonid Rybnikov (2014)

Journal of the European Mathematical Society

Similarity:

Drinfeld Zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of the affine Lie algebra 𝔰𝔩 ^ n . We introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the Zastava space bijectively at the level of complex points. The natural Poisson structure on the Zastava space can be described on Z in terms of Hamiltonian reduction of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra. The...

Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series

Elumalai Krishnan Nithiyanandham, Bhaskara Srutha Keerthi (2024)

Mathematica Bohemica

Similarity:

Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class 𝔭 - Φ 𝒮 * ( t , μ , ν , J , K ) is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.

Existence of solutions to the Poisson equation in L p -weighted spaces

Joanna Rencławowicz, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

We examine the Poisson equation with boundary conditions on a cylinder in a weighted space of L p , p≥ 3, type. The weight is a positive power of the distance from a distinguished plane. To prove the existence of solutions we use our result on existence in a weighted L₂ space.

On the convergence theory of double K -weak splittings of type II

Vaibhav Shekhar, Nachiketa Mishra, Debasisha Mishra (2022)

Applications of Mathematics

Similarity:

Recently, Wang (2017) has introduced the K -nonnegative double splitting using the notion of matrices that leave a cone K n invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for K -weak regular and K -nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory...

Poisson geometry and deformation quantization near a strictly pseudoconvex boundary

Eric Leichtnam, Xiang Tang, Alan Weinstein (2007)

Journal of the European Mathematical Society

Similarity:

Let X be a complex manifold with strongly pseudoconvex boundary M . If ψ is a defining function for M , then log ψ is plurisubharmonic on a neighborhood of M in X , and the (real) 2-form σ = i ¯ ( log ψ ) is a symplectic structure on the complement of M in a neighborhood of M in X ; it blows up along M . The Poisson structure obtained by inverting σ extends smoothly across M and determines a contact structure on M which is the same as the one induced by the complex structure. When M is compact, the Poisson structure...