Displaying similar documents to “Characterization of the alternating groups by their order and one conjugacy class length”

A variation of Thompson's conjecture for the symmetric groups

Mahdi Abedei, Ali Iranmanesh, Farrokh Shirjian (2020)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and let N ( G ) denote the set of conjugacy class sizes of G . Thompson’s conjecture states that if G is a centerless group and S is a non-abelian simple group satisfying N ( G ) = N ( S ) , then G S . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that G Sym ( p + 1 ) if and only if | G | = ( p + 1 ) ! and G has a special conjugacy class of size ( p + 1 ) ! / p , where p > 5 is a prime number. Consequently, if G is a centerless group with N ( G ) = N ( Sym ( p + 1 ) ) , then...

Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam Babai, Ali Mahmoudifar (2017)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

Recognition of some families of finite simple groups by order and set of orders of vanishing elements

Maryam Khatami, Azam Babai (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group. An element g G is called a vanishing element if there exists an irreducible complex character χ of G such that χ ( g ) = 0 . Denote by Vo ( G ) the set of orders of vanishing elements of G . Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let G be a finite group and M a finite nonabelian simple group such that Vo ( G ) = Vo ( M ) and | G | = | M | . Then G M . We answer in affirmative this conjecture for M = S z ( q ) , where q = 2 2 n + 1 and either q - 1 , q - 2 q + 1 or q + 2 q + 1 is a prime number, and M = F 4 ( q ) , where...

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

Similarity:

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two...

Several quantitative characterizations of some specific groups

A. Mohammadzadeh, Ali Reza Moghaddamfar (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and let π ( G ) = { p 1 , p 2 , ... , p k } be the set of prime divisors of | G | for which p 1 < p 2 < < p k . The Gruenberg-Kegel graph of G , denoted GK ( G ) , is defined as follows: its vertex set is π ( G ) and two different vertices p i and p j are adjacent by an edge if and only if G contains an element of order p i p j . The degree of a vertex p i in GK ( G ) is denoted by d G ( p i ) and the k -tuple D ( G ) = ( d G ( p 1 ) , d G ( p 2 ) , ... , d G ( p k ) ) is said to be the degree pattern of G . Moreover, if ω π ( G ) is the vertex set of a connected component of GK ( G ) , then the largest ω -number which divides | G | , is...

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group...

Invariance of the parity conjecture for p -Selmer groups of elliptic curves in a D 2 p n -extension

Thomas de La Rochefoucauld (2011)

Bulletin de la Société Mathématique de France

Similarity:

We show a p -parity result in a D 2 p n -extension of number fields L / K ( p 5 ) for the twist 1 η τ : W ( E / K , 1 η τ ) = ( - 1 ) 1 η τ , X p ( E / L ) , where E is an elliptic curve over K , η and τ are respectively the quadratic character and an irreductible representation of degree 2 of Gal ( L / K ) = D 2 p n , and X p ( E / L ) is the p -Selmer group. The main novelty is that we use a congruence result between ε 0 -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the p -parity conjecture...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

The local lifting problem for actions of finite groups on curves

Ted Chinburg, Robert Guralnick, David Harbater (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be an algebraically closed field of characteristic p &gt; 0 . We study obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite group G on k [ [ t ] ] . To each such  φ a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k . We say that the KGB obstruction of φ vanishes if G acts on a smooth projective curve X in characteristic  0 in such a way that X / H and Y / H have the same genus for all subgroups H G . We determine for which G the KGB...

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...

The generalized Hodge and Bloch conjectures are equivalent for general complete intersections

Claire Voisin (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove that Bloch’s conjecture is true for surfaces with p g = 0 obtained as 0 -sets X σ of a section σ of a very ample vector bundle on a variety X with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as 0 on holomorphic 2 -forms of  X σ , then it acts as 0 on  0 -cycles of degree 0 of  X σ . In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general X σ ...

On the recognizability of some projective general linear groups by the prime graph

Masoumeh Sajjadi (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The prime graph of G is a simple graph Γ ( G ) whose vertex set is π ( G ) and two distinct vertices p and q are joined by an edge if and only if G has an element of order p q . A group G is called k -recognizable by prime graph if there exist exactly k nonisomorphic groups H satisfying the condition Γ ( G ) = Γ ( H ) . A 1-recognizable group is usually called a recognizable group. In this problem, it was proved that PGL ( 2 , p α ) is recognizable, if p is an odd prime and α > 1 is odd. But for even α , only...

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .