Displaying similar documents to “Deformations of Kähler manifolds with nonvanishing holomorphic vector fields”

The Kähler Ricci flow on Fano manifolds (I)

Xiuxiong Chen, Bing Wang (2012)

Journal of the European Mathematical Society

Similarity:

We study the evolution of pluri-anticanonical line bundles K M - ν along the Kähler Ricci flow on a Fano manifold M . Under some special conditions, we show that the convergence of this flow is determined by the properties of the pluri-anticanonical divisors of M . For example, the Kähler Ricci flow on M converges when M is a Fano surface satisfying c 1 2 ( M ) = 1 or c 1 2 ( M ) = 3 . Combined with the works in [CW1] and [CW2], this gives a Ricci flow proof of the Calabi conjecture on Fano surfaces with reductive automorphism...

About the Calabi problem: a finite-dimensional approach

H.-D. Cao, J. Keller (2013)

Journal of the European Mathematical Society

Similarity:

Let us consider a projective manifold M n and a smooth volume form Ω on M . We define the gradient flow associated to the problem of Ω -balanced metrics in the quantum formalism, the Ω -balancing flow. At the limit of the quantization, we prove that (see Theorem 1) the Ω -balancing flow converges towards a natural flow in Kähler geometry, the Ω -Kähler flow. We also prove the long time existence of the Ω -Kähler flow and its convergence towards Yau’s solution to the Calabi conjecture of prescribing...

Towards a Mori theory on compact Kähler threefolds III

Thomas Peternell (2001)

Bulletin de la Société Mathématique de France

Similarity:

Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold ( K X is nef) is good,its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of K X is generated by global sections); unless X is simple. “Simple“ means that there is no compact subvariety through the very general point of X and X not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities...

Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

Robert J. Berman, Bo Berndtsson (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P . Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties ( X , Δ ) saying that ( X , Δ ) admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new...

Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor

Henri Guenancia (2014)

Annales de l’institut Fourier

Similarity:

Let X be a compact Kähler manifold and Δ be a -divisor with simple normal crossing support and coefficients between 1 / 2 and 1 . Assuming that K X + Δ is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on X Supp ( Δ ) having mixed Poincaré and cone singularities according to the coefficients of Δ . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair ( X , Δ ) .

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Pham Hoang Hiep, Sławomir Kołodziej, Ahmed Zeriahi (2014)

Journal of the European Mathematical Society

Similarity:

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that...

Remarks on the balanced metric on Hartogs triangles with integral exponent

Qiannan Zhang, Huan Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ + , i.e., Ω n ( γ ) = { z = ( z 1 , , z n ) n : | z 1 | 1 / γ < | z 2 | < < | z n | < 1 } equipped with a natural Kähler form ω g ( μ ) : = 1 2 ( i / π ) ¯ Φ n with Φ n ( z ) = - μ 1 ln ( | z 2 | 2 γ - | z 1 | 2 ) - i = 2 n - 1 μ i ln ( | z i + 1 | 2 - | z i | 2 ) - μ n ln ( 1 - | z n | 2 ) , where μ = ( μ 1 , , μ n ) , μ i > 0 , depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for ( Ω n ( γ ) , g ( μ ) ) and we prove that g ( μ ) is balanced if and only if μ 1 > 1 and γ μ 1 is an integer, μ i are integers such that μ i 2 for all i = 2 , ... , n - 1 , and μ n > 1 . Second, we prove that g ( μ ) is Kähler-Einstein if and only if μ 1 = μ 2 = = μ n = 2 λ , where...

Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds

Neil Seshadri (2009)

Bulletin de la Société Mathématique de France

Similarity:

To any smooth compact manifold M endowed with a contact structure H and partially integrable almost CR structure J , we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric g on M × ( - 1 , 0 ) . We consider the asymptotic expansion, in powers of a special defining function, of the volume of M × ( - 1 , 0 ) with respect to g and prove that the log term coefficient is independent of J (and any choice...

Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric

Ngaiming Mok (2012)

Journal of the European Mathematical Society

Similarity:

We study the extension problem for germs of holomorphic isometries f : ( D ; x 0 ) ( Ω ; f ( x 0 ) ) up to normalizing constants between bounded domains in Euclidean spaces equipped with Bergman metrics d s D 2 on D and d s Ω 2 on Ω . Our main focus is on boundary extension for pairs of bounded domains ( D , Ω ) such that the Bergman kernel K D ( z , w ) extends meromorphically in ( z , w ¯ ) to a neighborhood of D ¯ × D , and such that the analogous statement holds true for the Bergman kernel K Ω ( ς , ξ ) on Ω . Assuming that ( D ; d s D 2 ) and ( Ω ; d s Ω 2 ) are complete Kähler manifolds, we prove that...

Complex structures on product of circle bundles over complex manifolds

Parameswaran Sankaran, Ajay Singh Thakur (2013)

Annales de l’institut Fourier

Similarity:

Let L ¯ i X i be a holomorphic line bundle over a compact complex manifold for i = 1 , 2 . Let S i denote the associated principal circle-bundle with respect to some hermitian inner product on L ¯ i . We construct complex structures on S = S 1 × S 2 which we refer to as scalar, diagonal, and linear types. While scalar type structures always exist, the more general diagonal but non-scalar type structures are constructed assuming that L ¯ i are equivariant ( * ) n i -bundles satisfying some additional conditions....

Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds

Laurent Meersseman (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of 0 in p , for some p &gt; 0 ) or differentiable (parametrized by an open neighborhood of 0 in p , for some p &gt; 0 ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then, under which conditions...

On the volume of a pseudo-effective class and semi-positive properties of the Harder-Narasimhan filtration on a compact Hermitian manifold

Zhiwei Wang (2016)

Annales Polonici Mathematici

Similarity:

This paper divides into two parts. Let (X,ω) be a compact Hermitian manifold. Firstly, if the Hermitian metric ω satisfies the assumption that ̅ ω k = 0 for all k, we generalize the volume of the cohomology class in the Kähler setting to the Hermitian setting, and prove that the volume is always finite and the Grauert-Riemenschneider type criterion holds true, which is a partial answer to a conjecture posed by Boucksom. Secondly, we observe that if the anticanonical bundle K X - 1 is nef, then for...

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

Similarity:

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 . We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space...

The gradient flow of Higgs pairs

Jiayu Li, Xi Zhang (2011)

Journal of the European Mathematical Society

Similarity:

We consider the gradient flow of the Yang–Mills–Higgs functional of Higgs pairs on a Hermitian vector bundle ( E , H 0 ) over a Kähler surface ( M , ω ) , and study the asymptotic behavior of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condition ( A 0 , φ 0 ) converges, in an appropriate sense which takes into account bubbling phenomena, to a critical point ( A , φ ) of this functional. We also prove that the limiting Higgs pair ( A , φ ) can be extended smoothly to a vector bundle...

Convergence in capacity

Pham Hoang Hiep (2008)

Annales Polonici Mathematici

Similarity:

We prove that if ( Ω ) u j u ( Ω ) in Cₙ-capacity then l i m i n f j ( d d c u j ) n 1 u > - ( d d c u ) n . This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.

Lagrangian fibrations on hyperkähler manifolds – On a question of Beauville

Daniel Greb, Christian Lehn, Sönke Rollenske (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a compact hyperkähler manifold containing a complex torus L as a Lagrangian subvariety. Beauville posed the question whether X admits a Lagrangian fibration with fibre L . We show that this is indeed the case if X is not projective. If X is projective we find an almost holomorphic Lagrangian fibration with fibre L under additional assumptions on the pair ( X , L ) , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic...

On the Picard number of divisors in Fano manifolds

Cinzia Casagrande (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in  X . We consider the image 𝒩 1 ( D , X ) of  𝒩 1 ( D ) in  𝒩 1 ( X ) under the natural push-forward of 1 -cycles. We show that ρ X - ρ D codim 𝒩 1 ( D , X ) 8 . Moreover if codim 𝒩 1 ( D , X ) 3 , then either X S × T where S is a Del Pezzo surface, or codim 𝒩 1 ( D , X ) = 3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that ρ X - ρ T = 4 .