Displaying similar documents to “Quiver varieties and the character ring of general linear groups over finite fields”

The Brauer group and the Brauer–Manin set of products of varieties

Alexei N. Skorobogatov, Yuri G. Zahrin (2014)

Journal of the European Mathematical Society

Similarity:

Let X and Y be smooth and projective varieties over a field k finitely generated over Q , and let X ¯ and Y ¯ be the varieties over an algebraic closure of k obtained from X and Y , respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br ( X ¯ ) Br( Y ¯ ) has finite index in the Galois invariant subgroup of Br ( X ¯ × Y ¯ ) . This implies that the cokernel of the natural map Br ( X ) Br ( Y ) Br ( X × Y ) is finite when k is a number field. In this case we prove that the Brauer–Manin set of the...

On sharp characters of type { - 1 , 0 , 2 }

Alireza Abdollahi, Javad Bagherian, Mahdi Ebrahimi, Maryam Khatami, Zahra Shahbazi, Reza Sobhani (2022)

Czechoslovak Mathematical Journal

Similarity:

For a complex character χ of a finite group G , it is known that the product sh ( χ ) = l L ( χ ) ( χ ( 1 ) - l ) is a multiple of | G | , where L ( χ ) is the image of χ on G - { 1 } . The character χ is said to be a sharp character of type L if L = L ( χ ) and sh ( χ ) = | G | . If the principal character of G is not an irreducible constituent of χ , then the character χ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups G with normalized sharp characters of type { - 1 , 0 , 2 } . Here we prove that such a group with nontrivial...

On tangent cones to Schubert varieties in type E

Mikhail V. Ignatyev, Aleksandr A. Shevchenko (2020)

Communications in Mathematics

Similarity:

We consider tangent cones to Schubert subvarieties of the flag variety G / B , where B is a Borel subgroup of a reductive complex algebraic group G of type E 6 , E 7 or E 8 . We prove that if w 1 and w 2 form a good pair of involutions in the Weyl group W of G then the tangent cones C w 1 and C w 2 to the corresponding Schubert subvarieties of G / B do not coincide as subschemes of the tangent space to G / B at the neutral point.

Generalized symmetry classes of tensors

Gholamreza Rafatneshan, Yousef Zamani (2020)

Czechoslovak Mathematical Journal

Similarity:

Let V be a unitary space. For an arbitrary subgroup G of the full symmetric group S m and an arbitrary irreducible unitary representation Λ of G , we study the generalized symmetry class of tensors over V associated with G and Λ . Some important properties of this vector space are investigated.

Elements of large order on varieties over prime finite fields

Mei-Chu Chang, Bryce Kerr, Igor E. Shparlinski, Umberto Zannier (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let 𝒱 be a fixed algebraic variety defined by m polynomials in n variables with integer coefficients. We show that there exists a constant C ( 𝒱 ) such that for almost all primes p for all but at most C ( 𝒱 ) points on the reduction of 𝒱 modulo p at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.

Non-supersingular hyperelliptic jacobians

Yuri G. Zarhin (2004)

Bulletin de la Société Mathématique de France

Similarity:

Let K be a field of odd characteristic p , let f ( x ) be an irreducible separable polynomial of degree n 5 with big Galois group (the symmetric group or the alternating group). Let C be the hyperelliptic curve y 2 = f ( x ) and J ( C ) its jacobian. We prove that J ( C ) does not have nontrivial endomorphisms over an algebraic closure of K if either n 7 or p 3 .

Linear natural operators lifting p -vectors to tensors of type ( q , 0 ) on Weil bundles

Jacek Dębecki (2016)

Czechoslovak Mathematical Journal

Similarity:

We give a classification of all linear natural operators transforming p -vectors (i.e., skew-symmetric tensor fields of type ( p , 0 ) ) on n -dimensional manifolds M to tensor fields of type ( q , 0 ) on T A M , where T A is a Weil bundle, under the condition that p 1 , n p and n q . The main result of the paper states that, roughly speaking, each linear natural operator lifting p -vectors to tensor fields of type ( q , 0 ) on T A is a sum of operators obtained by permuting the indices of the tensor products of linear natural...

A new characterization for the simple group PSL ( 2 , p 2 ) by order and some character degrees

Behrooz Khosravi, Behnam Khosravi, Bahman Khosravi, Zahra Momen (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and p a prime number. We prove that if G is a finite group of order | PSL ( 2 , p 2 ) | such that G has an irreducible character of degree p 2 and we know that G has no irreducible character θ such that 2 p θ ( 1 ) , then G is isomorphic to PSL ( 2 , p 2 ) . As a consequence of our result we prove that PSL ( 2 , p 2 ) is uniquely determined by the structure of its complex group algebra.

On varieties of Hilbert type

Lior Bary-Soroker, Arno Fehm, Sebastian Petersen (2014)

Annales de l’institut Fourier

Similarity:

A variety X over a field K is of Hilbert type if X ( K ) is not thin. We prove that if f : X S is a dominant morphism of K -varieties and both S and all fibers f - 1 ( s ) , s S ( K ) , are of Hilbert type, then so is X . We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be a field of characteristic p > 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that...

J -invariant of linear algebraic groups

Viktor Petrov, Nikita Semenov, Kirill Zainoulline (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let G be a semisimple linear algebraic group of inner type over a field F , and let X be a projective homogeneous G -variety such that G splits over the function field of X . We introduce the J -invariant of G which characterizes the motivic behavior of X , and generalizes the J -invariant defined by A. Vishik in the context of quadratic forms. We use this J -invariant to provide motivic decompositions of all generically split projective homogeneous G -varieties, e.g. Severi-Brauer varieties,...

Construction of Mendelsohn designs by using quasigroups of ( 2 , q ) -varieties

Lidija Goračinova-Ilieva, Smile Markovski (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let q be a positive integer. An algebra is said to have the property ( 2 , q ) if all of its subalgebras generated by two distinct elements have exactly q elements. A variety 𝒱 of algebras is a variety with the property ( 2 , q ) if every member of 𝒱 has the property ( 2 , q ) . Such varieties exist only in the case of q prime power. By taking the universes of the subalgebras of any finite algebra of a variety with the property ( 2 , q ) , 2 < q , blocks of Steiner system of type ( 2 , q ) are obtained. The stated correspondence...