Decompositions for real Banach spaces with small spaces of operators
Manuel González, José M. Herrera (2007)
Studia Mathematica
Similarity:
We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces for which is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces can be divided into subsets in such a way that if and are in different...