Displaying similar documents to “Separation properties for self-conformal sets”

On the conformal gauge of a compact metric space

Matias Carrasco Piaggio (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this article we study the Ahlfors regular conformal gauge of a compact metric space ( X , d ) , and its conformal dimension dim A R ( X , d ) . Using a sequence of finite coverings of  ( X , d ) , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim A R ( X , d ) using the critical exponent Q N associated to the combinatorial modulus.

Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability

Marco L. A. Velásquez, André F. A. Ramalho, Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold M ¯ f n + 1 endowed with a weight function f and having a closed conformal Killing vector field V with conformal factor ψ V , that is, graphs constructed through the flow generated by V and which are defined over an integral leaf of the foliation V orthogonal to V . For such graphs, we establish some rigidity results under appropriate constraints on the f -mean curvature. Afterwards, we obtain some stability...

Conformal harmonic forms, Branson–Gover operators and Dirichlet problem at infinity

Erwann Aubry, Colin Guillarmou (2011)

Journal of the European Mathematical Society

Similarity:

For odd-dimensional Poincaré–Einstein manifolds ( X n + 1 , g ) , we study the set of harmonic k -forms (for k < n / 2 ) which are C m (with m ) on the conformal compactification X ¯ of X . This set is infinite-dimensional for small m but it becomes finite-dimensional if m is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology H k ( X ¯ , X ¯ ) and the kernel of the Branson–Gover [3] differential operators ( L k , G k ) on the conformal infinity ( X ¯ , [ h 0 ] ) . We also relate the set of C n - 2 k + 1 ( Λ k ( X ¯ ) ) forms in the kernel of d + δ g ...

The almost Einstein operator for ( 2 , 3 , 5 ) distributions

Katja Sagerschnig, Travis Willse (2017)

Archivum Mathematicum

Similarity:

For the geometry of oriented ( 2 , 3 , 5 ) distributions ( M , ) , which correspond to regular, normal parabolic geometries of type ( G 2 , P ) for a particular parabolic subgroup P < G 2 , we develop the corresponding tractor calculus and use it to analyze the first BGG operator Θ 0 associated to the 7 -dimensional irreducible representation of G 2 . We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions...

Universal Taylor series, conformal mappings and boundary behaviour

Stephen J. Gardiner (2014)

Annales de l’institut Fourier

Similarity:

A holomorphic function f on a simply connected domain Ω is said to possess a universal Taylor series about a point in Ω if the partial sums of that series approximate arbitrary polynomials on arbitrary compacta K outside Ω (provided only that K has connected complement). This paper shows that this property is not conformally invariant, and, in the case where Ω is the unit disc, that such functions have extreme angular boundary behaviour.

Mobius invariant Besov spaces on the unit ball of n

Małgorzata Michalska, Maria Nowak, Paweł Sobolewski (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We give new characterizations of the analytic Besov spaces B p on the unit ball 𝔹 of n in terms of oscillations and integral means over some Euclidian balls contained in 𝔹 .

Superapproximation of the partial derivatives in the space of linear triangular and bilinear quadrilateral finite elements

Dalík, Josef

Similarity:

A method for the second-order approximation of the values of partial derivatives of an arbitrary smooth function u = u ( x 1 , x 2 ) in the vertices of a conformal and nonobtuse regular triangulation 𝒯 h consisting of triangles and convex quadrilaterals is described and its accuracy is illustrated numerically. The method assumes that the interpolant Π h ( u ) in the finite element space of the linear triangular and bilinear quadrilateral finite elements from 𝒯 h is known only.

On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets

Juan Rivera-Letelier (2001)

Fundamenta Mathematicae

Similarity:

Given d ≥ 2 consider the family of polynomials P c ( z ) = z d + c for c ∈ ℂ. Denote by J c the Julia set of P c and let d = c | J c i s c o n n e c t e d be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters c d : those for which the critical point 0 is not recurrent by P c and without parabolic cycles. The Hausdorff dimension of J c , denoted by H D ( J c ) , does not depend continuously on c at such c d ; on the other hand the function c H D ( J c ) is analytic in - d . Our first result asserts that there is still some...

Infinite Iterated Function Systems Depending on a Parameter

Ludwik Jaksztas (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets J 0 , σ for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of J 0 , σ , given by Urbański and Zinsmeister. The closure of the limit set of our IFS ϕ σ , α n , k is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of...

On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets

Ludwik Jaksztas (2011)

Fundamenta Mathematicae

Similarity:

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map g σ . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J 0 , σ is continuous at σ₀ as the function of the parameter σ ¯ if and only if H D ( J 0 , σ ) 4 / 3 . Since H D ( J 0 , σ ) > 4 / 3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of H D ( J 0 , σ ) on an open and dense subset of...

On a theorem of Lindelof

Vladimir Ya. Gutlyanskii, Olli Martio, Vladimir Ryazanov (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We give a quasiconformal version of the proof for the classical Lindelof theorem: Let f map the unit disk 𝔻 conformally onto the inner domain of a Jordan curve 𝒞 : Then 𝒞 is smooth if and only if arg f ' ( z ) has a continuous extension to 𝔻 ¯ . Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.

The CR Yamabe conjecture the case n = 1

Najoua Gamara (2001)

Journal of the European Mathematical Society

Similarity:

Let ( M , θ ) be a compact CR manifold of dimension 2 n + 1 with a contact form θ , and L = ( 2 + 2 / n ) Δ b + R its associated CR conformal laplacien. The CR Yamabe conjecture states that there is a contact form θ ˜ on M conformal to θ which has a constant Webster curvature. This problem is equivalent to the existence of a function u such that L u = u 1 + 2 / n , u > 0 on M . D. Jerison and J. M. Lee solved the CR Yamabe problem in the case where n 2 and ( M , θ ) is not locally CR equivalent to the sphere S 2 n + 1 of 𝐂 n . In a join work with R. Yacoub, the CR Yamabe...

On the multiplicity of eigenvalues of conformally covariant operators

Yaiza Canzani (2014)

Annales de l’institut Fourier

Similarity:

Let ( M , g ) be a compact Riemannian manifold and P g an elliptic, formally self-adjoint, conformally covariant operator of order m acting on smooth sections of a bundle over M . We prove that if P g has no rigid eigenspaces (see Definition 2.2), the set of functions f C ( M , ) for which P e f g has only simple non-zero eigenvalues is a residual set in C ( M , ) . As a consequence we prove that if P g has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics...

1 -cocycles on the group of contactomorphisms on the supercircle S 1 | 3 generalizing the Schwarzian derivative

Boujemaa Agrebaoui, Raja Hattab (2016)

Czechoslovak Mathematical Journal

Similarity:

The relative cohomology H diff 1 ( 𝕂 ( 1 | 3 ) , 𝔬𝔰𝔭 ( 2 , 3 ) ; 𝒟 λ , μ ( S 1 | 3 ) ) of the contact Lie superalgebra 𝕂 ( 1 | 3 ) with coefficients in the space of differential operators 𝒟 λ , μ ( S 1 | 3 ) acting on tensor densities on S 1 | 3 , is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating 1 -cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative 1 -cocycle s ( X f ) = D 1 D 2 D 3 ( f ) α 3 1 / 2 , X f 𝕂 ( 1 | 3 ) which is invariant with respect to the conformal subsuperalgebra 𝔬𝔰𝔭 ( 2 , 3 ) of 𝕂 ( 1 | 3 ) . In this work we study the supergroup case. We give an explicit construction of 1 -cocycles...

Local equivalence of some maximally symmetric ( 2 , 3 , 5 ) -distributions II

Matthew Randall (2025)

Archivum Mathematicum

Similarity:

We show the change of coordinates that maps the maximally symmetric ( 2 , 3 , 5 ) -distribution given by solutions to the k = 2 3 and k = 3 2 generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric k = 2 3 and k = 3 2 generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the k = 2 3 and k = 3 2 generalised Chazy equation and the corresponding Ricci-flat conformal scale...

On a new normalization for tractor covariant derivatives

Matthias Hammerl, Petr Somberg, Vladimír Souček, Josef Šilhan (2012)

Journal of the European Mathematical Society

Similarity:

A regular normal parabolic geometry of type G / P on a manifold M gives rise to sequences D i of invariant differential operators, known as the curved version of the BGG resolution. These sequences are constructed from the normal covariant derivative ω on the corresponding tractor bundle V , where ω is the normal Cartan connection. The first operator D 0 in the sequence is overdetermined and it is well known that ω yields the prolongation of this operator in the homogeneous case M = G / P . Our first...

On the Separation Dimension of K ω

Yasunao Hattori, Jan van Mill (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove that t r t K ω > ω + 1 , where trt stands for the transfinite extension of Steinke’s separation dimension. This answers a question of Chatyrko and Hattori.