Displaying similar documents to “Combinatorial inequalities and subspaces of L₁”

Lower bounds for Jung constants of Orlicz sequence spaces

Z. D. Ren (2010)

Annales Polonici Mathematici

Similarity:

A new lower bound for the Jung constant J C ( l ( Φ ) ) of the Orlicz sequence space l ( Φ ) defined by an N-function Φ is found. It is proved that if l ( Φ ) is reflexive and the function tΦ’(t)/Φ(t) is increasing on ( 0 , Φ - 1 ( 1 ) ] , then J C ( l ( Φ ) ) ( Φ - 1 ( 1 / 2 ) ) / ( Φ - 1 ( 1 ) ) . Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003) in some cases and that the results given in Yan’s paper (2004) are not accurate.

Uniform convexity and associate spaces

Petteri Harjulehto, Peter Hästö (2018)

Czechoslovak Mathematical Journal

Similarity:

We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura (2021)

Czechoslovak Mathematical Journal

Similarity:

Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

Normal structure of Lorentz-Orlicz spaces

Pei-Kee Lin, Huiying Sun (1997)

Annales Polonici Mathematici

Similarity:

Let ϕ: ℝ → ℝ₊ ∪ 0 be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by u₀ = supu: ϕ is linear on (0,u), v₀=supv: w is constant on (0,v) (where sup∅ = 0). We prove the following theorem. Theorem. Suppose that Λ ϕ , w ( 0 , ) (respectively, Λ ϕ , w ( 0 , 1 ) ) is an order continuous Lorentz-Orlicz space. (1) Λ ϕ , w has normal structure if and only if u₀ = 0 (respectively, v ϕ ( u ) · w < 2 a n d u < ) . (2) Λ ϕ , w has weakly normal structure if and only if 0 v ϕ ( u ) · w < 2 .

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Similarity:

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

The space of multipliers and convolutors of Orlicz spaces on a locally compact group

Hasan P. Aghababa, Ibrahim Akbarbaglu, Saeid Maghsoudi (2013)

Studia Mathematica

Similarity:

Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let L φ ( G ) and L ψ ( G ) be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach L φ ( G ) -submodule X of L ψ ( G ) , the multiplier space H o m L φ ( G ) ( L φ ( G ) , X * ) is a dual Banach space with predual L φ ( G ) X : = s p a n ¯ u x : u L φ ( G ) , x X , where the closure is taken in the dual space of H o m L φ ( G ) ( L φ ( G ) , X * ) . We also prove that if φ is a Δ₂-regular N-function, then C v φ ( G ) , the space of convolutors of M φ ( G ) , is identified with the dual of a Banach algebra of functions on G...

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further...

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...

Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities

Ron Kerman, Luboš Pick (2011)

Studia Mathematica

Similarity:

We study imbeddings of the Sobolev space W m , ϱ ( Ω ) : = u: Ω → ℝ with ϱ ( α u / x α ) < ∞ when |α| ≤ m, in which Ω is a bounded Lipschitz domain in ℝⁿ, ϱ is a rearrangement-invariant (r.i.) norm and 1 ≤ m ≤ n - 1. For such a space we have shown there exist r.i. norms, τ ϱ and σ ϱ , that are optimal with respect to the inclusions W m , ϱ ( Ω ) W m , τ ϱ ( Ω ) L σ ϱ ( Ω ) . General formulas for τ ϱ and σ ϱ are obtained using the -method of interpolation. These lead to explicit expressions when ϱ is a Lorentz Gamma norm or an Orlicz norm.

On the inclusions of X Φ spaces

Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec (2023)

Mathematica Bohemica

Similarity:

We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X Φ spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ -finite measure space ( Ω , 𝒜 , μ ) .

Gagliardo-Nirenberg inequalities in logarithmic spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2006)

Colloquium Mathematicae

Similarity:

We obtain interpolation inequalities for derivatives: M q , α ( | f ( x ) | ) d x C [ M p , β ( Φ ( x , | f | , | ( 2 ) f | ) ) d x + M r , γ ( Φ ( x , | f | , | ( 2 ) f | ) ) d x ] , and their counterparts expressed in Orlicz norms: ||∇f||²(q,α) ≤ C||Φ₁(x,|f|,|∇(2)f|)||(p,β) ||Φ₂(x,|f|,|∇(2)f|)||(r,γ) , where | | · | | ( s , κ ) is the Orlicz norm relative to the function M s , κ ( t ) = t s ( l n ( 2 + t ) ) κ . The parameters p,q,r,α,β,γ and the Carathéodory functions Φ₁,Φ₂ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo-Nirenberg inequalities follow as a special case. Gagliardo-Nirenberg inequalities in logarithmic spaces...

Linear operators on non-locally convex Orlicz spaces

Marian Nowak, Agnieszka Oelke (2008)

Banach Center Publications

Similarity:

We study linear operators from a non-locally convex Orlicz space L Φ to a Banach space ( X , | | · | | X ) . Recall that a linear operator T : L Φ X is said to be σ-smooth whenever u ( o ) 0 in L Φ implies | | T ( u ) | | X 0 . It is shown that every σ-smooth operator T : L Φ X factors through the inclusion map j : L Φ L Φ ̅ , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators T : L Φ X . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on...

Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions

Albert Baernstein II, Robert C. Culverhouse (2002)

Studia Mathematica

Similarity:

Let X = i = 1 k a i U i , Y = i = 1 k b i U i , where the U i are independent random vectors, each uniformly distributed on the unit sphere in ℝⁿ, and a i , b i are real constants. We prove that if b ² i is majorized by a ² i in the sense of Hardy-Littlewood-Pólya, and if Φ: ℝⁿ → ℝ is continuous and bisubharmonic, then EΦ(X) ≤ EΦ(Y). Consequences include most of the known sharp L ² - L p Khinchin inequalities for sums of the form X. For radial Φ, bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts...

On a Sobolev type inequality and its applications

Witold Bednorz (2006)

Studia Mathematica

Similarity:

Assume ||·|| is a norm on ℝⁿ and ||·||⁎ its dual. Consider the closed ball T : = B | | · | | ( 0 , r ) , r > 0. Suppose φ is an Orlicz function and ψ its conjugate. We prove that for arbitrary A,B > 0 and for each Lipschitz function f on T, s u p s , t T | f ( s ) - f ( t ) | 6 A B ( 0 r ψ ( 1 / A ε n - 1 ) ε n - 1 d ε + 1 / ( n | B | | · | | ( 0 , 1 ) | ) T φ ( 1 / B | | f ( u ) | | ) d u ) , where |·| is the Lebesgue measure on ℝⁿ. This is a strengthening of the Sobolev inequality obtained by M. Talagrand. We use this inequality to state, for a given concave, strictly increasing function η: ℝ₊ → ℝ with η(0) = 0, a necessary and sufficient condition on...

Matrix subspaces of L₁

Gideon Schechtman (2013)

Studia Mathematica

Similarity:

If E = e i and F = f i are two 1-unconditional basic sequences in L₁ with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices a i , j with norm | | a i , j | | E ( F ) = | | k | | l a k , l f l | | e k | | embeds into L₁. This generalizes a recent result of Prochno and Schütt.

Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces

Hidemitsu Wadade (2010)

Studia Mathematica

Similarity:

We present several continuous embeddings of the critical Besov space B p n / p , ρ ( ) . We first establish a Gagliardo-Nirenberg type estimate | | u | | q , w r 0 , ν C ( 1 / ( n - r ) ) 1 / q + 1 / ν - 1 / ρ ( q / r ) 1 / ν - 1 / ρ | | u | | p 0 , ρ ( n - r ) p / n q | | u | | p n / p , ρ 1 - ( n - r ) p / n q , for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function w r ( x ) = 1 / ( | x | r ) with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding B p n / p , ρ ( ) B Φ , w r 0 , ν ( ) , where the function Φ₀ of the weighted Besov-Orlicz space B Φ , w r 0 , ν ( ) is a Young function of the exponential type. Another point of interest is to embed B p n / p , ρ ( ) into the weighted Besov...

Boundedness of generalized fractional integral operators on Orlicz spaces near L 1 over metric measure spaces

Daiki Hashimoto, Takao Ohno, Tetsu Shimomura (2019)

Czechoslovak Mathematical Journal

Similarity:

We are concerned with the boundedness of generalized fractional integral operators I ρ , τ from Orlicz spaces L Φ ( X ) near L 1 ( X ) to Orlicz spaces L Ψ ( X ) over metric measure spaces equipped with lower Ahlfors Q -regular measures, where Φ is a function of the form Φ ( r ) = r ( r ) and is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.

Best constants for the isoperimetric inequality in quantitative form

Marco Cicalese, Gian Paolo Leonardi (2013)

Journal of the European Mathematical Society

Similarity:

We prove some results in the context of isoperimetric inequalities with quantitative terms. In the 2 -dimensional case, our main contribution is a method for determining the optimal coefficients c 1 , ... , c m in the inequality δ P ( E ) k = 1 m c k α ( E ) k + o ( α ( E ) m ) , valid for each Borel set E with positive and finite area, with δ P ( E ) and α ( E ) being, respectively, the 𝑖𝑠𝑜𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑓𝑖𝑐𝑖𝑡 and the 𝐹𝑟𝑎𝑒𝑛𝑘𝑒𝑙𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 of E . In n dimensions, besides proving existence and regularity properties of minimizers for a wide class of 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒𝑖𝑠𝑜𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡𝑠 including the lower semicontinuous extension of δ P ( E ) α ( E ) 2 , we...

Weighted local Orlicz-Hardy spaces with applications to pseudo-differential operators

Dachun Yang, Sibei Yang

Similarity:

Let Φ be a concave function on (0,∞) of strictly critical lower type index p Φ ( 0 , 1 ] and ω A l o c ( ) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted local Orlicz-Hardy space h ω Φ ( ) via the local grand maximal function. Let ρ ( t ) t - 1 / Φ - 1 ( t - 1 ) for all t ∈ (0,∞). We also introduce the BMO-type space b m o ρ , ω ( ) and establish the duality between h ω Φ ( ) and b m o ρ , ω ( ) . Characterizations of h ω Φ ( ) , including the atomic characterization, the local vertical and the local nontangential maximal function characterizations, are...

Rademacher functions in Cesàro type spaces

Sergei V. Astashkin, Lech Maligranda (2010)

Studia Mathematica

Similarity:

The Rademacher sums are investigated in the Cesàro spaces C e s p (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces K p , w on [0,1]. They span l₂ space in C e s p for any 1 ≤ p < ∞ and in K p , w if and only if the weight w is larger than t l o g p / 2 ( 2 / t ) on (0,1). Moreover, the span of the Rademachers is not complemented in C e s p for any 1 ≤ p < ∞ or in K 1 , w for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is...

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

Similarity:

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

The Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Studia Mathematica

Similarity:

Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form C Λ ( G ) or L ¹ Λ ( G ) and which quotients of the form C ( G ) / C Λ ( G ) or L ¹ ( G ) / L ¹ Λ ( G ) have the Daugavet property. We show that C Λ ( G ) is a rich subspace of C(G) if and only if Γ Λ - 1 is a semi-Riesz set. If L ¹ Λ ( G ) is a rich subspace of L¹(G), then C Λ ( G ) is a rich subspace of C(G) as well. Concerning quotients, we prove that C ( G ) / C Λ ( G ) has the Daugavet property if Λ is a Rosenthal set, and that L ¹ Λ ( G ) is a poor subspace of L¹(G)...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting

Sonia Acinas, Fernando Mazzone (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W 1 L Φ ( [ 0 , T ] ) . We employ the direct method of calculus of variations and we consider  a potential  function F satisfying the inequality | F ( t , x ) | b 1 ( t ) Φ 0 ' ( | x | ) + b 2 ( t ) , with b 1 , b 2 L 1 and  certain N -functions Φ 0 .

Structure properties of D-R spaces

Hartmut von Trotha

Similarity:

CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.....................................................................................................

The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

Tamás Erdélyi (2003)

Studia Mathematica

Similarity:

Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose ( λ j ) j = 1 is a sequence of distinct positive numbers. Then s p a n 1 , x λ , x λ , . . . is dense in C[0,1] if and only if j = 1 ( λ j ) / ( λ j ² + 1 ) = . Moreover, if j = 1 ( λ j ) / ( λ j ² + 1 ) < , then every function from the C[0,1] closure of s p a n 1 , x λ , x λ , . . . can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an...