Displaying similar documents to “On the Bishop-Phelps-Bollobás theorem for operators and numerical radius”

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Similarity:

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

Characterization of Strongly Exposed Points in General Köthe-Bochner Banach Spaces

Houcine Benabdellah, My Hachem Lalaoui Rhali (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We study strongly exposed points in general Köthe-Bochner Banach spaces X(E). We first give a characterization of strongly exposed points of the set of X-selections of a measurable multifunction Γ. We then apply this result to the study of strongly exposed points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly exposed point of B X ( E ) , then |f| is a strongly exposed point of B X and f(ω)/∥ f(ω)∥ is a strongly exposed point of B E for μ-almost all ω ∈ S(f). ...

On the class of positive disjoint weak p -convergent operators

Abderrahman Retbi (2024)

Mathematica Bohemica

Similarity:

We introduce and study the disjoint weak p -convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak p -convergent operators. Next, we examine the relationship between disjoint weak p -convergent operators and disjoint p -convergent operators. Finally, we characterize order bounded disjoint weak p -convergent operators...

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

Order-bounded operators from vector-valued function spaces to Banach spaces

Marian Nowak (2005)

Banach Center Publications

Similarity:

Let E be an ideal of L⁰ over a σ-finite measure space (Ω,Σ,μ). For a real Banach space ( X , | | · | | X ) let E(X) be a subspace of the space L⁰(X) of μ-equivalence classes of strongly Σ-measurable functions f: Ω → X and consisting of all those f ∈ L⁰(X) for which the scalar function | | f ( · ) | | X belongs to E. Let E(X)˜ stand for the order dual of E(X). For u ∈ E⁺ let D u ( = f E ( X ) : | | f ( · ) | | X u ) stand for the order interval in E(X). For a real Banach space ( Y , | | · | | Y ) a linear operator T: E(X) → Y is said to be order-bounded whenever for each u ∈...

A note on a class of homeomorphisms between Banach spaces

Piotr Fijałkowski (2005)

Colloquium Mathematicae

Similarity:

This paper deals with homeomorphisms F: X → Y, between Banach spaces X and Y, which are of the form F ( x ) : = F ̃ x ( 2 n + 1 ) where F ̃ : X 2 n + 1 Y is a continuous (2n+1)-linear operator.

Compact operators whose adjoints factor through subspaces of l p

Deba P. Sinha, Anil K. Karn (2002)

Studia Mathematica

Similarity:

For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if K n = 1 α x : α B a l l ( l p ' ) , where p’ = p/(p-1) and x l p s ( X ) . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering x l p w ( X ) . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of l p in a particular manner. The normed operator ideals ( K p , κ p ) of p-compact operators and ( W p , ω p ) of weakly p-compact operators, arising from these factorizations,...

On strongly l p -summing m-linear operators

Lahcène Mezrag (2008)

Colloquium Mathematicae

Similarity:

We introduce and study a new concept of strongly l p -summing m-linear operators in the category of operator spaces. We give some characterizations of this notion such as the Pietsch domination theorem and we show that an m-linear operator is strongly l p -summing if and only if its adjoint is l p -summing.

The joint essential numerical range of operators: convexity and related results

Chi-Kwong Li, Yiu-Tung Poon (2009)

Studia Mathematica

Similarity:

Let W(A) and W e ( A ) be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators A = (A₁, ..., Aₘ) acting on an infinite-dimensional Hilbert space. It is shown that W e ( A ) is always convex and admits many equivalent formulations. In particular, for any fixed i ∈ 1, ..., m, W e ( A ) can be obtained as the intersection of all sets of the form c l ( W ( A , . . . , A i + 1 , A i + F , A i + 1 , . . . , A ) ) , where F = F* has finite rank. Moreover, the closure cl(W(A)) of W(A) is always star-shaped with the elements in...

Some properties and applications of equicompact sets of operators

E. Serrano, C. Piñeiro, J. M. Delgado (2007)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces. A subset M of (X,Y) (the vector space of all compact operators from X into Y endowed with the operator norm) is said to be equicompact if every bounded sequence (xₙ) in X has a subsequence ( x k ( n ) ) such that ( T x k ( n ) ) is uniformly convergent for T ∈ M. We study the relationship between this concept and the notion of uniformly completely continuous set and give some applications. Among other results, we obtain a generalization of the classical Ascoli theorem and a compactness...

On the (C,α) Cesàro bounded operators

Elmouloudi Ed-dari (2004)

Studia Mathematica

Similarity:

For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by M α = ( A α ) - 1 k = 0 n A n - k α - 1 T k . For α = 1, we find M ¹ = ( n + 1 ) - 1 k = 0 n T k , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.

On Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2006)

Studia Mathematica

Similarity:

We consider some stability aspects of the classical problem of extension of C(K)-valued operators. We introduce the class ℒ of Banach spaces of Lindenstrauss-Pełczyński type as those such that every operator from a subspace of c₀ into them can be extended to c₀. We show that all ℒ-spaces are of type but not conversely. Moreover, -spaces will be characterized as those spaces E such that E-valued operators from w*(l₁,c₀)-closed subspaces of l₁ extend to l₁. Regarding examples we will...

On the Banach-Mazur distance between continuous function spaces with scattered boundaries

Jakub Rondoš (2023)

Czechoslovak Mathematical Journal

Similarity:

We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant 2 appearing in the Amir-Cambern theorem may be replaced by 3 for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs...

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Representing non-weakly compact operators

Manuel González, Eero Saksman, Hans-Olav Tylli (1995)

Studia Mathematica

Similarity:

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of L 1 and C(0,1), but R(L(E)/W(E)) identifies isometrically...

An extension of Mazur's theorem on Gateaux differentiability to the class of strongly α (·)-paraconvex functions

S. Rolewicz (2006)

Studia Mathematica

Similarity:

Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that f ( t x + ( 1 - t ) y ) t f ( x ) + ( 1 - t ) f ( y ) + m i n [ t , ( 1 - t ) ] α ( | | x - y | | ) . Then there is a dense G δ -set A G Ω such that f is Gateaux differentiable at every point of A G .

Reflexivity and approximate fixed points

Eva Matoušková, Simeon Reich (2003)

Studia Mathematica

Similarity:

A Banach space X is reflexive if and only if every bounded sequence xₙ in X contains a norm attaining subsequence. This means that it contains a subsequence x n k for which s u p f S X * l i m s u p k f ( x n k ) is attained at some f in the dual unit sphere S X * . A Banach space X is not reflexive if and only if it contains a normalized sequence xₙ with the property that for every f S X * , there exists g S X * such that l i m s u p n f ( x ) < l i m i n f n g ( x ) . Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded...

On extensions of families of operators

Oleg Lihvoinen (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of r materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions m is less than the dimension n of...

Operator Lipschitz functions on Banach spaces

Jan Rozendaal, Fedor Sukochev, Anna Tomskova (2016)

Studia Mathematica

Similarity:

Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form | | f ( B ) S - S f ( A ) | | ( X , Y ) c o n s t | | B S - S A | | ( X , Y ) for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on X = p and Y = q for p < q. We also study the estimate above in the setting of Banach...

(Non-)amenability of ℬ(E)

Volker Runde (2010)

Banach Center Publications

Similarity:

In 1972, the late B. E. Johnson introduced the notion of an amenable Banach algebra and asked whether the Banach algebra ℬ(E) of all bounded linear operators on a Banach space E could ever be amenable if dim E = ∞. Somewhat surprisingly, this question was answered positively only very recently as a by-product of the Argyros-Haydon result that solves the “scalar plus compact problem”: there is an infinite-dimensional Banach space E, the dual of which is ℓ¹, such that ( E ) = ( E ) + i d E . Still, ℬ(ℓ²) is...

Absolutely continuous linear operators on Köthe-Bochner spaces

(2011)

Banach Center Publications

Similarity:

Let E be a Banach function space over a finite and atomless measure space (Ω,Σ,μ) and let ( X , | | · | | X ) and ( Y , | | · | | Y ) be real Banach spaces. A linear operator T acting from the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if | | T ( 1 A f ) | | Y 0 whenever μ(Aₙ) → 0, (Aₙ) ⊂ Σ. In this paper we examine absolutely continuous operators from E(X) to Y. Moreover, we establish relationships between different classes of linear operators from E(X) to Y.

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

Spaces of compact operators on C ( 2 × [ 0 , α ] ) spaces

Elói Medina Galego (2011)

Colloquium Mathematicae

Similarity:

We classify, up to isomorphism, the spaces of compact operators (E,F), where E and F are the Banach spaces of all continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological products of Cantor cubes 2 and intervals of ordinal numbers [0,α].

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

Essentially Incomparable Banach Spaces of Continuous Functions

Rogério Augusto dos Santos Fajardo (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct, under Axiom ♢, a family ( C ( K ξ ) ) ξ < 2 ( 2 ω ) of indecomposable Banach spaces with few operators such that every operator from C ( K ξ ) into C ( K η ) is weakly compact, for all ξ ≠ η. In particular, these spaces are pairwise essentially incomparable. Assuming no additional set-theoretic axiom, we obtain this result with size 2 ω instead of 2 ( 2 ω ) .

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

On group decompositions of bounded cosine sequences

Wojciech Chojnacki (2007)

Studia Mathematica

Similarity:

A two-sided sequence ( c ) n with values in a complex unital Banach algebra is a cosine sequence if it satisfies c n + m + c n - m = 2 c c for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence ( c ) n is bounded if s u p n | | c | | < . A (bounded) group decomposition for a cosine sequence c = ( c ) n is a representation of c as c = ( b + b - n ) / 2 for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying s u p n | | b | | < , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, here...

Isomorphic properties in spaces of compact operators

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

Integral equalities for functions of unbounded spectral operators in Banach spaces

Benedetto Silvestri

Similarity:

The work is dedicated to investigating a limiting procedure for extending “local” integral operator equalities to “global” ones in the sense explained below, and to applying it to obtaining generalizations of the Newton-Leibniz formula for operator-valued functions for a wide class of unbounded operators. The integral equalities considered have the form g ( R F ) f x ( R F ) d μ ( x ) = h ( R F ) . (1) They involve functions of the kind X x f x ( R F ) B ( F ) , where X is a general locally compact space, F runs over a suitable class of Banach subspaces...

Application of ( L ) sets to some classes of operators

Kamal El Fahri, Nabil Machrafi, Jawad H&amp;#039;michane, Aziz Elbour (2016)

Mathematica Bohemica

Similarity:

The paper contains some applications of the notion of Ł sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order ( L ) -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an ( L ) sets. As a sequence characterization of such operators, we see that an operator T : X E from a Banach space into a Banach lattice is order Ł -Dunford-Pettis, if and only if | T ( x n ) | 0 for σ ( E , E ' ) for every...

On operator-valued cosine sequences on UMD spaces

Wojciech Chojnacki (2010)

Studia Mathematica

Similarity:

A two-sided sequence ( c ) n with values in a complex unital Banach algebra is a cosine sequence if it satisfies c n + m + c n - m = 2 c c for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence ( c ) n is bounded if s u p n | | c | | < . A (bounded) group decomposition for a cosine sequence c = ( c ) n is a representation of c as c = ( b + b - n ) / 2 for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying s u p n | | b | | < , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, the...

The Embeddability of c₀ in Spaces of Operators

Ioana Ghenciu, Paul Lewis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space K w * ( X * , Y ) , as well as the complementation of the space K w * ( X * , Y ) of w*-w compact operators in the space L w * ( X * , Y ) of w*-w operators from X* to Y.