Displaying similar documents to “New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin spaces on homogeneous type spaces and fractals”

Fractional integral operators on B p , λ with Morrey-Campanato norms

Katsuo Matsuoka, Eiichi Nakai (2011)

Banach Center Publications

Similarity:

We introduce function spaces B p , λ with Morrey-Campanato norms, which unify B p , λ , C M O p , λ and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator I α on these spaces.

Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces

Gladis Pradolini, Jorgelina Recchi (2018)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a nonnegative Borel measure on d satisfying that μ ( Q ) l ( Q ) n for every cube Q n , where l ( Q ) is the side length of the cube Q and 0 < n d . We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ . Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result...

Limiting Sobolev inequalities for vector fields and canceling linear differential operators

Jean Van Schaftingen (2013)

Journal of the European Mathematical Society

Similarity:

The estimate D k - 1 u L n / ( n - 1 ) A ( D ) u L 1 is shown to hold if and only if A ( D ) is elliptic and canceling. Here A ( D ) is a homogeneous linear differential operator A ( D ) of order k on n from a vector space V to a vector space E . The operator A ( D ) is defined to be canceling if ξ n { 0 } A ( ξ ) [ V ] = { 0 } . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous...

Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators

Qingying Xue (2013)

Studia Mathematica

Similarity:

The following iterated commutators T , Π b of the maximal operator for multilinear singular integral operators and I α , Π b of the multilinear fractional integral operator are introduced and studied: T , Π b ( f ) ( x ) = s u p δ > 0 | [ b , [ b , [ b m - 1 , [ b , T δ ] ] m - 1 ] ] ( f ) ( x ) | , I α , Π b ( f ) ( x ) = [ b , [ b , [ b m - 1 , [ b , I α ] ] m - 1 ] ] ( f ) ( x ) , where T δ are the smooth truncations of the multilinear singular integral operators and I α is the multilinear fractional integral operator, b i B M O for i = 1,…,m and f⃗ = (f1,…,fm). Weighted strong and L(logL) type end-point estimates for the above iterated commutators associated with two classes of multiple...

L p - L q boundedness of analytic families of fractional integrals

Valentina Casarino, Silvia Secco (2008)

Studia Mathematica

Similarity:

We consider a double analytic family of fractional integrals S z γ , α along the curve t | t | α , introduced for α = 2 by L. Grafakos in 1993 and defined by ( S z γ , α f ) ( x , x ) : = 1 / Γ ( z + 1 / 2 ) | u - 1 | z ψ ( u - 1 ) f ( x - t , x - u | t | α ) d u | t | γ d t / t , where ψ is a bump function on ℝ supported near the origin, f c ( ² ) , z,γ ∈ ℂ, Re γ ≥ 0, α ∈ ℝ, α ≥ 2. We determine the set of all (1/p,1/q,Re z) such that S z γ , α maps L p ( ² ) to L q ( ² ) boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel K - 1 + i θ i ϱ , α is a product kernel on ℝ², adapted to the curve t | t | α ; as a consequence, we show...

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Similarity:

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

Optimal estimates for the fractional Hardy operator

Yoshihiro Mizuta, Aleš Nekvinda, Tetsu Shimomura (2015)

Studia Mathematica

Similarity:

Let A α f ( x ) = | B ( 0 , | x | ) | - α / n B ( 0 , | x | ) f ( t ) d t be the n-dimensional fractional Hardy operator, where 0 < α ≤ n. It is well-known that A α is bounded from L p to L p α with p α = n p / ( α p - n p + n ) when n(1-1/p) < α ≤ n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a ’source’ space S α , Y , which is strictly larger than X, and a ’target’ space T Y , which is strictly smaller than Y, under the assumption that A α is bounded from X into Y and the Hardy-Littlewood...

Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces

Katsuo Matsuoka (2014)

Banach Center Publications

Similarity:

We introduce the generalized fractional integrals I ̃ α , d and prove the strong and weak boundedness of I ̃ α , d on the central Morrey spaces B p , λ ( ) . In order to show the boundedness, the generalized λ-central mean oscillation spaces Λ p , λ ( d ) ( ) and the generalized weak λ-central mean oscillation spaces W Λ p , λ ( d ) ( ) play an important role.

Density of smooth maps for fractional Sobolev spaces W s , p into simply connected manifolds when s 1

Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen (2013)

Confluentes Mathematici

Similarity:

Given a compact manifold N n ν and real numbers s 1 and 1 p &lt; , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is strongly dense in the fractional Sobolev space W s , p ( Q m ; N n ) when N n is s p simply connected. For s p integer, we prove weak sequential density of C ( Q ¯ m ; N n ) when N n is s p - 1 simply connected. The proofs are based on the existence of a retraction of ν onto N n except for a small subset of N n and on a pointwise estimate of fractional derivatives of composition of maps in W s , p W 1 , s p .

Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces

Rémi Arcangéli, Juan José Torrens (2013)

Studia Mathematica

Similarity:

We collect and extend results on the limit of σ 1 - k ( 1 - σ ) k | v | l + σ , p , Ω p as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and | · | l + σ , p , Ω is the intrinsic seminorm of order l+σ in the Sobolev space W l + σ , p ( Ω ) . In general, the above limit is equal to c [ v ] p , where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.

Approximate and L p Peano derivatives of nonintegral order

J. Marshall Ash, Hajrudin Fejzić (2005)

Studia Mathematica

Similarity:

Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. L p , 1 ≤ p ≤ ∞) sense at x m if there are numbers f α ( x ) , |α| ≤ n, such that f ( x + h ) - | α | n f α ( x ) h α / α ! is O ( h u ) in the approximate (resp. L p ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or L p sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and...

On some nonlinear nonhomogeneous elliptic unilateral problems involving noncontrollable lower order terms with measure right hand side

C. Yazough, E. Azroul, H. Redwane (2013)

Applicationes Mathematicae

Similarity:

We prove the existence of entropy solutions to unilateral problems associated to equations of the type A u - d i v ( ϕ ( u ) ) = μ L ¹ ( Ω ) + W - 1 , p ' ( · ) ( Ω ) , where A is a Leray-Lions operator acting from W 1 , p ( · ) ( Ω ) into its dual W - 1 , p ( · ) ( Ω ) and ϕ C ( , N ) .

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

Similarity:

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of...

A uniform dimension result for two-dimensional fractional multiplicative processes

Xiong Jin (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Given a two-dimensional fractional multiplicative process ( F t ) t [ 0 , 1 ] determined by two Hurst exponents H 1 and H 2 , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of [ 0 , 1 ] by F if and only if H 1 = H 2 .

Topological disjointness from entropy zero systems

Wen Huang, Kyewon Koh Park, Xiangdong Ye (2007)

Bulletin de la Société Mathématique de France

Similarity:

The properties of topological dynamical systems ( X , T ) which are disjoint from all minimal systems of zero entropy, 0 , are investigated. Unlike the measurable case, it is known that topological K -systems make up a proper subset of the systems which are disjoint from 0 . We show that ( X , T ) has an invariant measure with full support, and if in addition ( X , T ) is transitive, then ( X , T ) is weakly mixing. A transitive diagonal system with only one minimal point is constructed. As a consequence, there exists...

Marcinkiewicz integrals on product spaces

H. Al-Qassem, A. Al-Salman, L. C. Cheng, Y. Pan (2005)

Studia Mathematica

Similarity:

We prove the L p boundedness of the Marcinkiewicz integral operators μ Ω on n × × n k under the condition that Ω L ( l o g L ) k / 2 ( n - 1 × × n k - 1 ) . The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Dachun Yang (2005)

Studia Mathematica

Similarity:

Let ( X , ϱ , μ ) d , θ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, | ϱ ( x , y ) - ϱ ( x ' , y ) | C ϱ ( x , x ' ) θ [ ϱ ( x , y ) + ϱ ( x ' , y ) ] 1 - θ , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, μ ( y X : ϱ ( x , y ) < r ) r d . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces F q s ( X ) and establishes their frame characterizations by first establishing a Plancherel-Pólya-type...

Results of nonexistence of solutions for some nonlinear evolution problems

Medjahed Djilali, Ali Hakem (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the present paper, we prove nonexistence results for the following nonlinear evolution equation, see works of T. Cazenave and A. Haraux (1990) and S. Zheng (2004), u t t + f ( x ) u t + ( - Δ ) α / 2 ( u m ) = h ( t , x ) | u | p , posed in ( 0 , T ) × N , where ( - Δ ) α / 2 , 0 < α 2 is α / 2 -fractional power of - Δ . Our method of proof is based on suitable choices of the test functions in the weak formulation of the sought solutions. Then, we extend this result to the case of a 2 × 2 system of the same type.

A new function space and applications

Jean Bourgain, Haïm Brezis, Petru Mironescu (2015)

Journal of the European Mathematical Society

Similarity:

We define a new function space B , which contains in particular BMO, BV, and W 1 / p , p , 1 < p < . We investigate its embedding into Lebesgue and Marcinkiewicz spaces. We present several inequalities involving L p norms of integer-valued functions in B . We introduce a significant closed subspace, B 0 , of B , containing in particular VMO and W 1 / p , p , 1 p < . The above mentioned estimates imply in particular that integer-valued functions belonging to B 0 are necessarily constant. This framework provides a “common roof”...

A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces

D. Cruz-Uribe, L. Diening, A. Fiorenza (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space L p ( ) whenever the exponent function p ( ) satisfies log-Hölder continuity conditions. We include the case where p ( ) assumes the value infinity. The same proof also shows that the fractional maximal operator M a , 0 < a < n , maps L p ( ) into L q ( ) , where 1 / p ( ) - 1 / q ( ) = a / n .

Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent

Hongbin Wang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let Ω L s ( S n - 1 ) for s 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral μ Ω and b is defined by [ b , μ Ω ] ( f ) ( x ) = ( 0 | x - y | t Ω ( x - y ) | x - y | n - 1 [ b ( x ) - b ( y ) ] f ( y ) d y | 2 d t t 3 1 / 2 . In this paper, the author proves the ( L p ( · ) ( n ) , L p ( · ) ( n ) ) -boundedness of the Marcinkiewicz integral operator μ Ω and its commutator [ b , μ Ω ] when p ( · ) satisfies some conditions. Moreover, the author obtains the corresponding result about μ Ω and [ b , μ Ω ] on Herz spaces with variable exponent.