Displaying similar documents to “James boundaries and σ-fragmented selectors”

The Lindelöf property in Banach spaces

B. Cascales, I. Namioka, J. Orihuela (2003)

Studia Mathematica

Similarity:

A topological space (T,τ) is said to be fragmented by a metric d on T if each non-empty subset of T has non-empty relatively open subsets of arbitrarily small d-diameter. The basic theorem of the present paper is the following. Let (M,ϱ) be a metric space with ϱ bounded and let D be an arbitrary index set. Then for a compact subset K of the product space M D the following four conditions are equivalent: (i) K is fragmented by d D , where, for each S ⊂ D, d S ( x , y ) = s u p ϱ ( x ( t ) , y ( t ) ) : t S . (ii) For each countable subset...

Banach spaces of bounded Szlenk index

E. Odell, Th. Schlumprecht, A. Zsák (2007)

Studia Mathematica

Similarity:

For a countable ordinal α we denote by α the class of separable, reflexive Banach spaces whose Szlenk index and the Szlenk index of their dual are bounded by α. We show that each α admits a separable, reflexive universal space. We also show that spaces in the class ω α · ω embed into spaces of the same class with a basis. As a consequence we deduce that each α is analytic in the Effros-Borel structure of subspaces of C[0,1].

A nice subclass of functionally countable spaces

Vladimir Vladimirovich Tkachuk (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable if f ( X ) is countable for any continuous function f : X . We will call a space X exponentially separable if for any countable family of closed subsets of X , there exists a countable set A X such that A 𝒢 whenever 𝒢 and 𝒢 . Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable...

On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity

Artur Michalak (2003)

Studia Mathematica

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. We show that if f: [0,1] → X is an increasing function with respect to a norming subset E of X* with uncountably many points of discontinuity and Q is a countable dense subset of [0,1], then (1) l i n f ( [ 0 , 1 ] ) ¯ contains an order isomorphic copy of D(0,1), (2) l i n f ( Q ) ¯ contains an isomorphic copy of C([0,1]), (3) l i n f ( [ 0 , 1 ] ) ¯ / l i n f ( Q ) ¯ contains an isomorphic copy of c₀(Γ) for some uncountable...

Exponential separability is preserved by some products

Vladimir Vladimirovich Tkachuk (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that exponential separability is an inverse invariant of closed maps with countably compact exponentially separable fibers. This implies that it is preserved by products with a scattered compact factor and in the products of sequential countably compact spaces. We also provide an example of a σ -compact crowded space in which all countable subspaces are scattered. If X is a Lindelöf space and every Y X with | Y | 2 ω 1 is scattered, then X is functionally countable; if every Y X with | Y | 2 𝔠 is scattered,...

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

Reflexivity and approximate fixed points

Eva Matoušková, Simeon Reich (2003)

Studia Mathematica

Similarity:

A Banach space X is reflexive if and only if every bounded sequence xₙ in X contains a norm attaining subsequence. This means that it contains a subsequence x n k for which s u p f S X * l i m s u p k f ( x n k ) is attained at some f in the dual unit sphere S X * . A Banach space X is not reflexive if and only if it contains a normalized sequence xₙ with the property that for every f S X * , there exists g S X * such that l i m s u p n f ( x ) < l i m i n f n g ( x ) . Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded...

Every separable Banach space has a basis with uniformly controlled permutations

Paolo Terenzi

Similarity:

There exists a universal control sequence p ̅ ( m ) m = 1 of increasing positive integers such that: Every infinite-dimensional separable Banach space X has a biorthogonal system xₙ,xₙ* with ||xₙ|| = 1 and ||xₙ*|| < K for each n such that, for each x ∈ X, x = n = 1 x π ( n ) * ( x ) x π ( n ) where π(n) is a permutation of n which depends on x but is uniformly controlled by p ̅ ( m ) m = 1 , that is, n n = 1 m π ( n ) n = 1 p ̅ ( m ) n n = 1 p ̅ ( m + 1 ) for each m.

Modifications of the double arrow space and related Banach spaces C(K)

Witold Marciszewski (2008)

Studia Mathematica

Similarity:

We consider the class of compact spaces K A which are modifications of the well known double arrow space. The space K A is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of K A spaces and on the isomorphic classification of the Banach spaces C ( K A ) .

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

Infinite-Dimensionality modulo Absolute Borel Classes

Vitalij Chatyrko, Yasunao Hattori (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces X α , Y α and Z α such that (i) f X α , f Y α , f Z α = ω , where f is either trdef or ₀-trsur, (ii) A ( α ) - t r i n d X α = and M ( α ) - t r i n d X α = - 1 , (iii) A ( α ) - t r i n d Y α = - 1 and M ( α ) - t r i n d Y α = , and (iv) A ( α ) - t r i n d Z α = M ( α ) - t r i n d Z α = and A ( α + 1 ) M ( α + 1 ) - t r i n d Z α = - 1 . We also show that there exists no separable metrizable space W α with A ( α ) - t r i n d W α , M ( α ) - t r i n d W α and A ( α ) M ( α ) - t r i n d W α = , where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.

An extension of Mazur's theorem on Gateaux differentiability to the class of strongly α (·)-paraconvex functions

S. Rolewicz (2006)

Studia Mathematica

Similarity:

Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that f ( t x + ( 1 - t ) y ) t f ( x ) + ( 1 - t ) f ( y ) + m i n [ t , ( 1 - t ) ] α ( | | x - y | | ) . Then there is a dense G δ -set A G Ω such that f is Gateaux differentiable at every point of A G .

Some results on semi-stratifiable spaces

Wei-Feng Xuan, Yan-Kui Song (2019)

Mathematica Bohemica

Similarity:

We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If X is a semi-stratifiable space, then X is separable if and only if X is D C ( ω 1 ) ; (2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable; (3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If t ( X ) = ω and d ( X ) ω 1 , then X is hereditarily separable. Finally, we prove that for...

C*-algebras have a quantitative version of Pełczyński's property (V)

Hana Krulišová (2017)

Czechoslovak Mathematical Journal

Similarity:

A Banach space X has Pełczyński’s property (V) if for every Banach space Y every unconditionally converging operator T : X Y is weakly compact. H. Pfitzner proved that C * -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that C ( K ) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover,...

On universality of countable and weak products of sigma hereditarily disconnected spaces

Taras Banakh, Robert Cauty (2001)

Fundamenta Mathematicae

Similarity:

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X ω of any subspace X ⊂ Y is not universal for the class ₂ of absolute G δ σ -sets; moreover, if Y is an absolute F σ δ -set, then X ω contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute G δ -set, then X ω contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable...

A note on star Lindelöf, first countable and normal spaces

Wei-Feng Xuan (2017)

Mathematica Bohemica

Similarity:

A topological space X is said to be star Lindelöf if for any open cover 𝒰 of X there is a Lindelöf subspace A X such that St ( A , 𝒰 ) = X . The “extent” e ( X ) of X is the supremum of the cardinalities of closed discrete subsets of X . We prove that under V = L every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under MA + ¬ CH , which shows that a star Lindelöf, first countable and normal space may not have countable extent.

More reflections on compactness

Lúcia R. Junqueira, Franklin D. Tall (2003)

Fundamenta Mathematicae

Similarity:

We consider the question of when X M = X , where X M is the elementary submodel topology on X ∩ M, especially in the case when X M is compact.

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...

Borel parts of the spectrum of an operator and of the operator algebra of a separable Hilbert space

Piotr Niemiec (2012)

Studia Mathematica

Similarity:

For a linear operator T in a Banach space let σ p ( T ) denote the point spectrum of T, let σ p , n ( T ) for finite n > 0 be the set of all λ σ p ( T ) such that dim ker(T - λ) = n and let σ p , ( T ) be the set of all λ σ p ( T ) for which ker(T - λ) is infinite-dimensional. It is shown that σ p ( T ) is σ , σ p , ( T ) is σ δ and for each finite n the set σ p , n ( T ) is the intersection of an σ set and a δ set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more...

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

Isometric embeddings of a class of separable metric spaces into Banach spaces

Sophocles K. Mercourakis, Vassiliadis G. Vassiliadis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( M , d ) be a bounded countable metric space and c > 0 a constant, such that d ( x , y ) + d ( y , z ) - d ( x , z ) c , for any pairwise distinct points x , y , z of M . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

L -limited-like properties on Banach spaces

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited * and the p -(SR * ) properties and characterize these classes of Banach spaces in terms of p - L -limited * and p -Right * subsets. The p - L -limited * property is studied in some spaces of operators.

-sums and the Banach space / c

Christina Brech, Piotr Koszmider (2014)

Fundamenta Mathematicae

Similarity:

This paper is concerned with the isomorphic structure of the Banach space / c and how it depends on combinatorial tools whose existence is consistent with but not provable from the usual axioms of ZFC. Our main global result is that it is consistent that / c does not have an orthogonal -decomposition, that is, it is not of the form ( X ) for any Banach space X. The main local result is that it is consistent that ( c ( ) ) does not embed isomorphically into / c , where is the cardinality of the continuum,...

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard Youyen, Suthep Suantai (2008)

Banach Center Publications

Similarity:

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...