Displaying similar documents to “Waring's number for large subgroups of ℤ*ₚ*”

A note on sumsets of subgroups in * p

Derrick Hart (2013)

Acta Arithmetica

Similarity:

Let A be a multiplicative subgroup of * p . Define the k-fold sumset of A to be k A = x 1 + . . . + x k : x i A , 1 i k . We show that 6 A * p for | A | > p 11 / 23 + ϵ . In addition, we extend a result of Shkredov to show that | 2 A | | A | 8 / 5 - ϵ for | A | p 5 / 9 .

On σ -permutably embedded subgroups of finite groups

Chenchen Cao, Li Zhang, Wenbin Guo (2019)

Czechoslovak Mathematical Journal

Similarity:

Let σ = { σ i : i I } be some partition of the set of all primes , G be a finite group and σ ( G ) = { σ i : σ i π ( G ) } . A set of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of is a Hall σ i -subgroup of G and contains exactly one Hall σ i -subgroup of G for every σ i σ ( G ) . G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set such that H A x = A x H for all A and all x G . A subgroup H of G is σ -permutably embedded in...

On an additive problem of unlike powers in short intervals

Qingqing Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

We prove that almost all positive even integers n can be represented as p 2 2 + p 3 3 + p 4 4 + p 5 5 with | p k k - 1 4 N | N 1 - 1 / 54 + ε for 2 k 5 . As a consequence, we show that each sufficiently large odd integer N can be written as p 1 + p 2 2 + p 3 3 + p 4 4 + p 5 5 with | p k k - 1 5 N | N 1 - 1 / 54 + ε for 1 k 5 .

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

Some results on Sylow numbers of finite groups

Yang Liu, Jinjie Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study the group structure in terms of the number of Sylow p -subgroups, which is denoted by n p ( G ) . The first part is on the group structure of finite group G such that n p ( G ) = n p ( G / N ) , where N is a normal subgroup of G . The second part is on the average Sylow number asn ( G ) and we prove that if G is a finite nonsolvable group with asn ( G ) < 39 / 4 and asn ( G ) 29 / 4 , then G / F ( G ) A 5 , where F ( G ) is the Fitting subgroup of G . In the third part, we study the nonsolvable group with small sum of Sylow numbers.

On solvability of finite groups with some s s -supplemented subgroups

Jiakuan Lu, Yanyan Qiu (2015)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be s s -supplemented in G if there exists a subgroup K of G such that G = H K and H K is s -permutable in K . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group G is solvable if every subgroup of odd prime order of G is s s -supplemented in G , and that G is solvable if and only if every Sylow subgroup of odd order of G is s s -supplemented in G . These results...

On R -conjugate-permutability of Sylow subgroups

Xianhe Zhao, Ruifang Chen (2016)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be conjugate-permutable if H H g = H g H for all g G . More generaly, if we limit the element g to a subgroup R of G , then we say that the subgroup H is R -conjugate-permutable. By means of the R -conjugate-permutable subgroups, we investigate the relationship between the nilpotence of G and the R -conjugate-permutability of the Sylow subgroups of A and B under the condition that G = A B , where A and B are subgroups of G . Some results known in the literature are improved...

On the conjugate type vector and the structure of a normal subgroup

Ruifang Chen, Lujun Guo (2022)

Czechoslovak Mathematical Journal

Similarity:

Let N be a normal subgroup of a group G . The structure of N is given when the G -conjugacy class sizes of N is a set of a special kind. In fact, we give the structure of a normal subgroup N under the assumption that the set of G -conjugacy class sizes of N is ( p 1 n 1 a 1 n 1 , , p 1 1 a 11 , 1 ) × × ( p r n r a r n r , , p r 1 a r 1 , 1 ) , where r > 1 , n i > 1 and p i j are distinct primes for i { 1 , 2 , , r } , j { 1 , 2 , , n i } .

Exponential domination in function spaces

Vladimir Vladimirovich Tkachuk (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a Tychonoff space X and an infinite cardinal κ , we prove that exponential κ -domination in X is equivalent to exponential κ -cofinality of C p ( X ) . On the other hand, exponential κ -cofinality of X is equivalent to exponential κ -domination in C p ( X ) . We show that every exponentially κ -cofinal space X has a κ + -small diagonal; besides, if X is κ -stable, then n w ( X ) κ . In particular, any compact exponentially κ -cofinal space has weight not exceeding κ . We also establish that any exponentially κ -cofinal...

Repdigits in the base b as sums of four balancing numbers

Refik Keskin, Faticko Erduvan (2021)

Mathematica Bohemica

Similarity:

The sequence of balancing numbers ( B n ) is defined by the recurrence relation B n = 6 B n - 1 - B n - 2 for n 2 with initial conditions B 0 = 0 and B 1 = 1 . B n is called the n th balancing number. In this paper, we find all repdigits in the base b , which are sums of four balancing numbers. As a result of our theorem, we state that if B n is repdigit in the base b and has at least two digits, then ( n , b ) = ( 2 , 5 ) , ( 3 , 6 ) . Namely, B 2 = 6 = ( 11 ) 5 and B 3 = 35 = ( 55 ) 6 .

Every 2 -group with all subgroups normal-by-finite is locally finite

Enrico Jabara (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G has all of its subgroups normal-by-finite if H / H G is finite for all subgroups H of G . The Tarski-groups provide examples of p -groups ( p a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a 2 -group with every subgroup normal-by-finite is locally finite. We also prove that if | H / H G | 2 for every subgroup H of G , then G contains an Abelian subgroup of index at most 8 .

On the number of isomorphism classes of derived subgroups

Leyli Jafari Taghvasani, Soran Marzang, Mohammad Zarrin (2019)

Czechoslovak Mathematical Journal

Similarity:

We show that a finite nonabelian characteristically simple group G satisfies n = | π ( G ) | + 2 if and only if G A 5 , where n is the number of isomorphism classes of derived subgroups of G and π ( G ) is the set of prime divisors of the group G . Also, we give a negative answer to a question raised in M. Zarrin (2014).

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with...