Displaying similar documents to “On a relation between norms of the maximal function and the square function of a martingale”

On the Rademacher maximal function

Mikko Kemppainen (2011)

Studia Mathematica

Similarity:

This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The L p -boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to σ-finite measure spaces with filtrations and the L p -boundedness is shown not to depend on the underlying measure space or the filtration. Martingale...

Noncommutative fractional integrals

Narcisse Randrianantoanina, Lian Wu (2015)

Studia Mathematica

Similarity:

Let ℳ be a hyperfinite finite von Nemann algebra and ( k ) k 1 be an increasing filtration of finite-dimensional von Neumann subalgebras of ℳ. We investigate abstract fractional integrals associated to the filtration ( k ) k 1 . For a finite noncommutative martingale x = ( x k ) 1 k n L ( ) adapted to ( k ) k 1 and 0 < α < 1, the fractional integral of x of order α is defined by setting I α x = k = 1 n ζ k α d x k for an appropriate sequence ( ζ k ) k 1 of scalars. For the case of a noncommutative dyadic martingale in L₁() where is the type II₁ hyperfinite factor...

On the distance between ⟨X⟩ and L in the space of continuous BMO-martingales

Litan Yan, Norihiko Kazamaki (2005)

Studia Mathematica

Similarity:

Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, | | X | | B M O s u p T | | E [ | X - X T | | T ] | | < , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by b ( X ) = b > 0 : s u p T | | E [ e x p ( b ² ( X - X T ) ) | T ] | | < , where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by q ( X ) = E [ X | ] - E [ X | ] . We use q(X) to characterize the distance between ⟨X⟩ and the class L of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities 1 / 4 d ( q ( X ) , L ) b ( X ) 4 / d ( q ( X ) , L ) hold for every continuous BMO-martingale X. ...

A Note on the Burkholder-Rosenthal Inequality

Adam Osękowski (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let df be a Hilbert-space-valued martingale difference sequence. The paper is devoted to a new, elementary proof of the estimate k = 0 d f k p C p ( k = 0 ( | d f k | ² | k - 1 ) ) 1 / 2 p + ( k = 0 | d f k | p ) 1 / p p , with C p = O ( p / l n p ) as p → ∞.

Moment Inequality for the Martingale Square Function

Adam Osękowski (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Consider the sequence ( C ) n 1 of positive numbers defined by C₁ = 1 and C n + 1 = 1 + C ² / 4 , n = 1,2,.... Let M be a real-valued martingale and let S(M) denote its square function. We establish the bound |Mₙ|≤ Cₙ Sₙ(M), n=1,2,..., and show that for each n, the constant Cₙ is the best possible.

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

Sharp Ratio Inequalities for a Conditionally Symmetric Martingale

Adam Osękowski (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let f be a conditionally symmetric martingale and let S(f) denote its square function. (i) For p,q > 0, we determine the best constants C p , q such that s u p n ( | f | p ) / ( 1 + S ² ( f ) ) q C p , q . Furthermore, the inequality extends to the case of Hilbert space valued f. (ii) For N = 1,2,... and q > 0, we determine the best constants C N , q ' such that s u p n ( f 2 N - 1 ) ( 1 + S ² ( f ) ) q C N , q ' . These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if...

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

Pointwise multipliers on martingale Campanato spaces

Eiichi Nakai, Gaku Sadasue (2014)

Studia Mathematica

Similarity:

We introduce generalized Campanato spaces p , ϕ on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then p , ϕ = B M O . We give a characterization of the set of all pointwise multipliers on p , ϕ .

Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales

Adam Osękowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ( h k ) k 0 be the Haar system on [0,1]. We show that for any vectors a k from a separable Hilbert space and any ε k [ - 1 , 1 ] , k = 0,1,2,..., we have the sharp inequality | | k = 0 n ε k a k h k | | W ( [ 0 , 1 ] ) 2 | | k = 0 n a k h k | | L ( [ 0 , 1 ] ) , n = 0,1,2,..., where W([0,1]) is the weak- L space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound | | Y | | W ( Ω ) 2 | | X | | L ( Ω ) , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.

Maximal non λ -subrings

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with unity. The notion of maximal non λ -subrings is introduced and studied. A ring R is called a maximal non λ -subring of a ring T if R T is not a λ -extension, and for any ring S such that R S T , S T is a λ -extension. We show that a maximal non λ -subring R of a field has at most two maximal ideals, and exactly two if R is integrally closed in the given field. A determination of when the classical D + M construction is a maximal non λ -domain is given. A necessary condition...

Maximal non-pseudovaluation subrings of an integral domain

Rahul Kumar (2024)

Czechoslovak Mathematical Journal

Similarity:

The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let R S be an extension of domains. Then R is called a maximal non-pseudovaluation subring of S if R is not a pseudovaluation subring of S , and for any ring T such that R T S , T is a pseudovaluation subring of S . We show that if S is not local, then there no such T exists between R and S . We also characterize maximal non-pseudovaluation subrings of a local integral domain.

Local integrability of strong and iterated maximal functions

Paul Alton Hagelstein (2001)

Studia Mathematica

Similarity:

Let M S denote the strong maximal operator. Let M x and M y denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that Q M y M x h < but Q M x M y h = . It is shown that if f is a function supported on Q such that Q M y M x f < but Q M x M y f = , then there exists a set A of finite measure in ℝ² such that A M S f = .

-sums and the Banach space / c

Christina Brech, Piotr Koszmider (2014)

Fundamenta Mathematicae

Similarity:

This paper is concerned with the isomorphic structure of the Banach space / c and how it depends on combinatorial tools whose existence is consistent with but not provable from the usual axioms of ZFC. Our main global result is that it is consistent that / c does not have an orthogonal -decomposition, that is, it is not of the form ( X ) for any Banach space X. The main local result is that it is consistent that ( c ( ) ) does not embed isomorphically into / c , where is the cardinality of the continuum,...

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard Youyen, Suthep Suantai (2008)

Banach Center Publications

Similarity:

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

Certain simple maximal subfields in division rings

Mehdi Aaghabali, Mai Hoang Bien (2019)

Czechoslovak Mathematical Journal

Similarity:

Let D be a division ring finite dimensional over its center F . The goal of this paper is to prove that for any positive integer n there exists a D ( n ) , the n th multiplicative derived subgroup such that F ( a ) is a maximal subfield of D . We also show that a single depth- n iterated additive commutator would generate a maximal subfield of D .

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

A law of the iterated logarithm for general lacunary series

Charles N. Moore, Xiaojing Zhang (2012)

Colloquium Mathematicae

Similarity:

We prove a law of the iterated logarithm for sums of the form k = 1 N a k f ( n k x ) where the n k satisfy a Hadamard gap condition. Here we assume that f is a Dini continuous function on ℝⁿ which has the property that for every cube Q of sidelength 1 with corners in the lattice ℤⁿ, f vanishes on ∂Q and has mean value zero on Q.

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces

Kristóf Szarvas, Ferenc Weisz (2016)

Czechoslovak Mathematical Journal

Similarity:

The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces L p ( d ) (in the case p > 1 ), but (in the case when 1 / p ( · ) is log-Hölder continuous and p - = inf { p ( x ) : x d } > 1 ) on the variable Lebesgue spaces L p ( · ) ( d ) , too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type ( 1 , 1 ) . In the present note we generalize Besicovitch’s covering theorem for the so-called γ -rectangles. We introduce a general maximal operator M s γ , δ and with the help of generalized Φ -functions, the strong-...

Sums of commuting operators with maximal regularity

Christian Le Merdy, Arnaud Simard (2001)

Studia Mathematica

Similarity:

Let Y be a Banach space and let S L p be a subspace of an L p space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to S ( Y ) L p ( Y ) . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and e - t B is a positive contraction...

C*-algebras have a quantitative version of Pełczyński's property (V)

Hana Krulišová (2017)

Czechoslovak Mathematical Journal

Similarity:

A Banach space X has Pełczyński’s property (V) if for every Banach space Y every unconditionally converging operator T : X Y is weakly compact. H. Pfitzner proved that C * -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that C ( K ) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover,...

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

On the structure of non-dentable subsets of C ( ω ω k )

Pericles D. Pavlakos, Minos Petrakis (2011)

Studia Mathematica

Similarity:

It is shown that there is no closed convex bounded non-dentable subset K of C ( ω ω k ) such that on subsets of K the PCP and the RNP are equivalent properties. Then applying the Schachermayer-Rosenthal theorem, we conclude that every non-dentable K contains a non-dentable subset L so that on L the weak topology coincides with the norm topology. It follows from known results that the RNP and the KMP are equivalent on subsets of C ( ω ω k ) .