Displaying similar documents to “Wiener criterion for degenerate elliptic obstacle problem”

Wiener criterion for degenerate elliptic obstacle problem

Marco Biroli, Umberto Mosco (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the A 2 class.

C 1 , α regularity for elliptic equations with the general nonstandard growth conditions

Sungchol Kim, Dukman Ri (2024)

Mathematica Bohemica

Similarity:

We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on Ω . We prove the global C 1 , α regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the C 1 , α regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.

A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces

Akihito Unai (2018)

Applications of Mathematics

Similarity:

We shall prove a weak comparison principle for quasilinear elliptic operators - div ( a ( x , u ) ) that includes the negative p -Laplace operator, where a : Ω × N N satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.

On weak minima of certain integral functionals

Gioconda Moscariello (1998)

Annales Polonici Mathematici

Similarity:

We prove a regularity result for weak minima of integral functionals of the form Ω F ( x , D u ) d x where F(x,ξ) is a Carathéodory function which grows as | ξ | p with some p > 1.

Convex integration and the L p theory of elliptic equations

Kari Astala, Daniel Faraco, László Székelyhidi Jr. (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

This paper deals with the L p theory of linear elliptic partial differential equations with bounded measurable coefficients. We construct in two dimensions examples of weak and so-called very weak solutions, with critical integrability properties, both to isotropic equations and to equations in non-divergence form. These examples show that the general L p theory, developed in [1, 24] and [2], cannot be extended under any restriction on the essential range of the coefficients. Our constructions...

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Existence of a renormalized solution of nonlinear degenerate elliptic problems

Youssef Akdim, Chakir Allalou (2014)

Applicationes Mathematicae

Similarity:

We study a general class of nonlinear elliptic problems associated with the differential inclusion β ( u ) - d i v ( a ( x , D u ) + F ( u ) ) f in Ω where f L ( Ω ) . The vector field a(·,·) is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in function spaces we prove existence of renormalized solutions for general L -data.

T-p(x)-solutions for nonlinear elliptic equations with an L¹-dual datum

El Houssine Azroul, Abdelkrim Barbara, Meryem El Lekhlifi, Mohamed Rhoudaf (2012)

Applicationes Mathematicae

Similarity:

We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem - d i v ( a ( x , u , u ) ) + g ( x , u ) = f - d i v F in Ω, where Ω is a bounded open domain of N , N ≥ 2 and a : Ω × × N N is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to i = 1 N L p ' ( · ) ( Ω ) .

Existence of weak solutions for elliptic Dirichlet problems with variable exponent

Sungchol Kim, Dukman Ri (2023)

Mathematica Bohemica

Similarity:

This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type - div a ( x , u , u ) + b ( x , u , u ) = 0 in Ω , u = 0 on Ω , where Ω is a bounded domain of n , n 2 . In particular, we do not require strict monotonicity of the principal part a ( x , z , · ) , while the approach is based on the variational method and results of the variable exponent function spaces.

Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition

Zonghu Xiu, Caisheng Chen (2013)

Annales Polonici Mathematici

Similarity:

We consider the existence and nonexistence of solutions for the following singular quasi-linear elliptic problem with concave and convex nonlinearities: ⎧ - d i v ( | x | - a p | u | p - 2 u ) + h ( x ) | u | p - 2 u = g ( x ) | u | r - 2 u , x ∈ Ω, ⎨ ⎩ | x | - a p | u | p - 2 u / ν = λ f ( x ) | u | q - 2 u , x ∈ ∂Ω, where Ω is an exterior domain in N , that is, Ω = N D , where D is a bounded domain in N with smooth boundary ∂D(=∂Ω), and 0 ∈ Ω. Here λ > 0, 0 ≤ a < (N-p)/p, 1 < p< N, ∂/∂ν is the outward normal derivative on ∂Ω. By the variational method, we prove the existence of multiple solutions. By the test function...

Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions

Honghui Yin, Zuodong Yang (2011)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ - Δ p u + | u | p - 2 u = f 1 λ ( x ) | u | q - 2 u + 2 α / ( α + β ) g μ | u | α - 2 u | v | β , x ∈ Ω, ⎨ - Δ p v + | v | p - 2 v = f 2 λ ( x ) | v | q - 2 v + 2 β / ( α + β ) g μ | u | α | v | β - 2 v , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and Ω N is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and f i λ i ( x ) = λ i f i + ( x ) + f i - ( x ) (i = 1,2) are sign-changing functions, where f i ± ( x ) = m a x ± f i ( x ) , 0 , g μ ( x ) = a ( x ) + μ b ( x ) , and Δ p u = d i v ( | u | p - 2 u ) denotes the p-Laplace operator. We use variational methods.

Analytic semigroups generated on a functional extrapolation space by variational elliptic equations

Vincenzo Vespri (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We prove that any elliptic operator of second order in variational form is the infinitesimal generator of an analytic semigroup in the functional space C - 1 , α ( Ω ) consinsting of all derivatives of hölder-continuous functions in Ω where Ω is a domain in n not necessarily bounded. We characterize, moreover the domain of the operator and the interpolation spaces between this and the space C - 1 , α ( Ω ) . We prove also that the spaces C - 1 , α ( Ω ) can be considered as extrapolation spaces relative to suitable non-variational...

Fonctions biharmoniques adjointes

Emmanuel P. Smyrnelis (2010)

Annales Polonici Mathematici

Similarity:

The study of the equation (L₂L₁)*h = 0 or of the equivalent system L*₂h₂ = -h₁, L*₁h₁ = 0, where L j ( j = 1 , 2 ) is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u₁,u₂) of the system L₁u₁ = -u₂, L₂u₂ = 0, L j ( j = 1 , 2 ) being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.

Time regularity of generalized Navier-Stokes equation with p ( x , t ) -power law

Cholmin Sin (2023)

Czechoslovak Mathematical Journal

Similarity:

We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by p ( x , t ) -power law for p ( x , t ) ( 3 n + 2 ) / ( n + 2 ) , n 2 , by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

Similarity:

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity,...

Analytic semigroups generated on a functional extrapolation space by variational elliptic equations

Vincenzo Vespri (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We prove that any elliptic operator of second order in variational form is the infinitesimal generator of an analytic semigroup in the functional space C - 1 , α ( Ω ) consinsting of all derivatives of hölder-continuous functions in Ω where Ω is a domain in n not necessarily bounded. We characterize, moreover the domain of the operator and the interpolation spaces between this and the space C - 1 , α ( Ω ) . We prove also that the spaces C - 1 , α ( Ω ) can be considered as extrapolation spaces relative to suitable non-variational...

A regularity theory for scalar local minimizers of splitting-type variational integrals

Michael Bildhauer, Martin Fuchs, Xiao Zhong (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Starting from Giaquinta’s counterexample [12] we introduce the class of splitting functionals being of ( p , q ) -growth with exponents p q &lt; and show for the scalar case that locally bounded local minimizers are of class C 1 , μ . Note that to our knowledge the only C 1 , μ -results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and Sbordone [10], Theorem 4.2.