Displaying similar documents to “Some applications of subordination theorems associated with fractional q -calculus operator”

Properties of functions concerned with Caratheodory functions

Mamoru Nunokawa, Emel Yavuz Duman, Shigeyoshi Owa (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let 𝒫 n denote the class of analytic functions p ( z ) of the form p ( z ) = 1 + c n z n + c n + 1 z n + 1 + in the open unit disc 𝕌 . Applying the result by S. S. Miller and P. T. Mocanu (J. Math. Anal. Appl. 65 (1978), 289-305), some interesting properties for p ( z ) concerned with Caratheodory functions are discussed. Further, some corollaries of the results concerned with the result due to M. Obradovic and S. Owa (Math. Nachr. 140 (1989), 97-102) are shown.

Fractional integral operators on B p , λ with Morrey-Campanato norms

Katsuo Matsuoka, Eiichi Nakai (2011)

Banach Center Publications

Similarity:

We introduce function spaces B p , λ with Morrey-Campanato norms, which unify B p , λ , C M O p , λ and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator I α on these spaces.

L p - L q boundedness of analytic families of fractional integrals

Valentina Casarino, Silvia Secco (2008)

Studia Mathematica

Similarity:

We consider a double analytic family of fractional integrals S z γ , α along the curve t | t | α , introduced for α = 2 by L. Grafakos in 1993 and defined by ( S z γ , α f ) ( x , x ) : = 1 / Γ ( z + 1 / 2 ) | u - 1 | z ψ ( u - 1 ) f ( x - t , x - u | t | α ) d u | t | γ d t / t , where ψ is a bump function on ℝ supported near the origin, f c ( ² ) , z,γ ∈ ℂ, Re γ ≥ 0, α ∈ ℝ, α ≥ 2. We determine the set of all (1/p,1/q,Re z) such that S z γ , α maps L p ( ² ) to L q ( ² ) boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel K - 1 + i θ i ϱ , α is a product kernel on ℝ², adapted to the curve t | t | α ; as a consequence, we show...

Some properties for α -starlike functions with respect to k -symmetric points of complex order

H. E. Darwish, A. Y. Lashin, S. M. Sowileh (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In the present work, we introduce the subclass 𝒯 γ , α k ( ϕ ) , of starlike functions with respect to k -symmetric points of complex order γ ( γ 0 ) in the open unit disc . Some interesting subordination criteria, inclusion relations and the integral representation for functions belonging to this class are provided. The results obtained generalize some known results, and some other new results are obtained.

On certain subclasses of analytic functions associated with the Carlson–Shaffer operator

Jagannath Patel, Ashok Kumar Sahoo (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The object of the present paper is to solve Fekete-Szego problem and determine the sharp upper bound to the second Hankel determinant for a certain class R λ ( a , c , A , B ) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass R ˜ λ ( a , c , A , B ) of R λ ( a , c , A , B ) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.

An integral operator on the classes 𝒮 * ( α ) and 𝒞𝒱ℋ ( β )

Nicoleta Ularu, Nicoleta Breaz (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to study some properties related to convexity order and coefficients estimation for a general integral operator. We find the convexity order for this operator, using the analytic functions from the class of starlike functions of order α and from the class 𝒞𝒱ℋ ( β ) and also we estimate the first two coefficients for functions obtained by this operator applied on the class 𝒞𝒱ℋ ( β ) .

Convolution conditions for bounded α -starlike functions of complex order

A. Y. Lashin (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let A be the class of analytic functions in the unit disc U of the complex plane with the normalization f ( 0 ) = f ' ( 0 ) - 1 = 0 . We introduce a subclass S M * ( α , b ) of A , which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class S M * ( n , α , b ) ( n 0 ) related to S M * ( α , b ) is also considered under the same conditions. Among other things, we find convolution conditions for a function f A to belong to the class S M * ( α , b ) . Several properties of the class S M * ( n , α , b ) are investigated. ...

Generalized problem of starlikeness for products of close-to-star functions

Jacek Dziok (2013)

Annales Polonici Mathematici

Similarity:

We consider functions of the type F ( z ) = z j = 1 n [ f j ( z ) / z ] a j , where a j are real numbers and f j are β j -strongly close-to-starlike functions of order α j . We look for conditions on the center and radius of the disk (a,r) = z:|z-a| < r, |a| < r ≤ 1 - |a|, ensuring that F((a,r)) is a domain starlike with respect to the origin.

Region of variability for functions with positive real part

Saminathan Ponnusamy, Allu Vasudevarao (2010)

Annales Polonici Mathematici

Similarity:

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ , β denote the class of all analytic functions P in the unit disk with P(0) = 1 and R e ( e i γ P ( z ) ) > β c o s γ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V ( z , λ ) for 0 z P ( ζ ) d ζ when P ranges over the class ( λ ) = P γ , β : P ' ( 0 ) = 2 ( 1 - β ) λ e - i γ c o s γ . As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

On certain general integral operators of analytic functions

B. A. Frasin (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we obtain new sufficient conditions for the operators F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) to be univalent in the open unit disc 𝒰 , where the functions f 1 , f 2 , . . . , f n belong to the classes S * ( a , b ) and 𝒦 ( a , b ) . The order of convexity for the operators  F α 1 , α 2 , . . . , α n , β ( z ) and G α 1 , α 2 , . . . , α n , β ( z ) is also determined. Furthermore, and for β = 1 , we obtain sufficient conditions for the operators F n ( z ) and G n ( z ) to be in the class 𝒦 ( a , b ) . Several corollaries and consequences of the main results are also considered.

Density of smooth maps for fractional Sobolev spaces W s , p into simply connected manifolds when s 1

Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen (2013)

Confluentes Mathematici

Similarity:

Given a compact manifold N n ν and real numbers s 1 and 1 p &lt; , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is strongly dense in the fractional Sobolev space W s , p ( Q m ; N n ) when N n is s p simply connected. For s p integer, we prove weak sequential density of C ( Q ¯ m ; N n ) when N n is s p - 1 simply connected. The proofs are based on the existence of a retraction of ν onto N n except for a small subset of N n and on a pointwise estimate of fractional derivatives of composition of maps in W s , p W 1 , s p .

A uniform dimension result for two-dimensional fractional multiplicative processes

Xiong Jin (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Given a two-dimensional fractional multiplicative process ( F t ) t [ 0 , 1 ] determined by two Hurst exponents H 1 and H 2 , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of [ 0 , 1 ] by F if and only if H 1 = H 2 .

Results of nonexistence of solutions for some nonlinear evolution problems

Medjahed Djilali, Ali Hakem (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the present paper, we prove nonexistence results for the following nonlinear evolution equation, see works of T. Cazenave and A. Haraux (1990) and S. Zheng (2004), u t t + f ( x ) u t + ( - Δ ) α / 2 ( u m ) = h ( t , x ) | u | p , posed in ( 0 , T ) × N , where ( - Δ ) α / 2 , 0 < α 2 is α / 2 -fractional power of - Δ . Our method of proof is based on suitable choices of the test functions in the weak formulation of the sought solutions. Then, we extend this result to the case of a 2 × 2 system of the same type.

Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces

Katsuo Matsuoka (2014)

Banach Center Publications

Similarity:

We introduce the generalized fractional integrals I ̃ α , d and prove the strong and weak boundedness of I ̃ α , d on the central Morrey spaces B p , λ ( ) . In order to show the boundedness, the generalized λ-central mean oscillation spaces Λ p , λ ( d ) ( ) and the generalized weak λ-central mean oscillation spaces W Λ p , λ ( d ) ( ) play an important role.

Subclasses of typically real functions determined by some modular inequalities

Leopold Koczan, Katarzyna Trąbka-Więcław (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ : = { z : | z | < 1 } , normalized by f ( 0 ) = f ' ( 0 ) - 1 = 0 and such that Im z Im f ( z ) 0 for z Δ . Moreover, let us denote: T ( 2 ) : = { f T : f ( z ) = - f ( - z ) for z Δ } and T M , g : = { f T : f M g in Δ } , where M > 1 , g T S and S consists of all analytic functions, normalized and univalent in Δ .We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes { f T : f M g in Δ } , where M > 1 , g T , which we denote...

Approximate and L p Peano derivatives of nonintegral order

J. Marshall Ash, Hajrudin Fejzić (2005)

Studia Mathematica

Similarity:

Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. L p , 1 ≤ p ≤ ∞) sense at x m if there are numbers f α ( x ) , |α| ≤ n, such that f ( x + h ) - | α | n f α ( x ) h α / α ! is O ( h u ) in the approximate (resp. L p ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or L p sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and...

A pure smoothness condition for Radó’s theorem for α -analytic functions

Abtin Daghighi, Frank Wikström (2016)

Czechoslovak Mathematical Journal

Similarity:

Let Ω n be a bounded, simply connected -convex domain. Let α + n and let f be a function on Ω which is separately C 2 α j - 1 -smooth with respect to z j (by which we mean jointly C 2 α j - 1 -smooth with respect to Re z j , Im z j ). If f is α -analytic on Ω f - 1 ( 0 ) , then f is α -analytic on Ω . The result is well-known for the case α i = 1 , 1 i n , even when f a priori is only known to be continuous.

H calculus and dilatations

Andreas M. Fröhlich, Lutz Weis (2006)

Bulletin de la Société Mathématique de France

Similarity:

We characterise the boundedness of the H calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if - A generates a bounded analytic C 0 semigroup ( T t ) on a UMD space, then the H calculus of A is bounded if and only if ( T t ) has a dilation to a bounded group on L 2 ( [ 0 , 1 ] , X ) . This generalises a Hilbert space result of C.LeMerdy. If X is an L p space we can choose another L p space in place of L 2 ( [ 0 , 1 ] , X ) .

Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator

M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let A denote the class of analytic functions with the normalization f ( 0 ) = f ' ( 0 ) - 1 = 0 in the open unit disc U = { z : z < 1 } .  Set f λ n ( z ) = z + k = 2 [ 1 + λ ( k - 1 ) ] n z k ( n N 0 ; λ 0 ; z U ) , and define f λ , μ n in terms of the Hadamard product f λ n ( z ) * f λ , μ n = z ( 1 - z ) μ ( μ > 0 ; z U ) . In this paper, we introduce several subclasses of analytic functions defined by means of the operator I λ , μ n : A A , given by I λ , μ n f ( z ) = f λ , μ n ( z ) * f ( z ) ( f A ; n N 0 ; λ 0 ; μ > 0 ) . Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces

Gladis Pradolini, Jorgelina Recchi (2018)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a nonnegative Borel measure on d satisfying that μ ( Q ) l ( Q ) n for every cube Q n , where l ( Q ) is the side length of the cube Q and 0 < n d . We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ . Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result...

Optimal estimates for the fractional Hardy operator

Yoshihiro Mizuta, Aleš Nekvinda, Tetsu Shimomura (2015)

Studia Mathematica

Similarity:

Let A α f ( x ) = | B ( 0 , | x | ) | - α / n B ( 0 , | x | ) f ( t ) d t be the n-dimensional fractional Hardy operator, where 0 < α ≤ n. It is well-known that A α is bounded from L p to L p α with p α = n p / ( α p - n p + n ) when n(1-1/p) < α ≤ n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a ’source’ space S α , Y , which is strictly larger than X, and a ’target’ space T Y , which is strictly smaller than Y, under the assumption that A α is bounded from X into Y and the Hardy-Littlewood...

Divisors in global analytic sets

Francesca Acquistapace, A. Díaz-Cano (2011)

Journal of the European Mathematical Society

Similarity:

We prove that any divisor Y of a global analytic set X n has a generic equation, that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The main result states that if X is pure dimensional, Y is locally principal, X / Y is not connected and Y represents the zero class in H q - 1 ( X , 2 ) then the divisor Y is globally principal.

Analytic aspects of the circulant Hadamard conjecture

Teodor Banica, Ion Nechita, Jean-Marc Schlenker (2014)

Annales mathématiques Blaise Pascal

Similarity:

We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for | q 0 | = ... = | q N - 1 | = 1 the quantity Φ = i + k = j + l q i q k q j q l satisfies Φ N 2 , with equality if and only if q = ( q i ) is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of Φ , (2) the study of the critical points of Φ , and (3) the computation of the moments of Φ . We explore here...

On the rigidity of webs

Michel Belliart (2007)

Bulletin de la Société Mathématique de France

Similarity:

Plane d -webs have been studied a lot since their appearance at the turn of the 20th century. A rather recent and striking result for them is the theorem of Dufour, stating that the measurable conjugacies between 3-webs have to be analytic. Here, we show that even the set-theoretic conjugacies between two d -webs, d 3 are analytic unless both webs are analytically parallelizable. Between two set-theoretically conjugate parallelizable d -webs, however, there always exists a nonmeasurable conjugacy;...

Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators

Qingying Xue (2013)

Studia Mathematica

Similarity:

The following iterated commutators T , Π b of the maximal operator for multilinear singular integral operators and I α , Π b of the multilinear fractional integral operator are introduced and studied: T , Π b ( f ) ( x ) = s u p δ > 0 | [ b , [ b , [ b m - 1 , [ b , T δ ] ] m - 1 ] ] ( f ) ( x ) | , I α , Π b ( f ) ( x ) = [ b , [ b , [ b m - 1 , [ b , I α ] ] m - 1 ] ] ( f ) ( x ) , where T δ are the smooth truncations of the multilinear singular integral operators and I α is the multilinear fractional integral operator, b i B M O for i = 1,…,m and f⃗ = (f1,…,fm). Weighted strong and L(logL) type end-point estimates for the above iterated commutators associated with two classes of multiple...