Displaying 721 – 740 of 764

Showing per page

Visco-elastic-plastic modelling

Koppová, Jana, Minárová, Mária, Sumec, Jozef (2017)

Proceedings of Equadiff 14

In this paper we deal with the mathematical modelling of rheological models with applications in various engineering disciplines and industry. We study the mechanical response of visco-elasto-plastic materials. We describe the basic rheological elements and focus our attention to the specific model of concrete, for which we derive governing equations and discuss its solution. We provide an application of rheological model involving rigid-plastic element as well - mechanical and mathematical model...

Viscosity solutions to a new phase-field model for martensitic phase transformations

Zhu, Peicheng (2015)

Application of Mathematics 2015

We investigate a new phase-field model which describes martensitic phase transitions, driven by material forces, in solid materials, e.g., shape memory alloys. This model is a nonlinear degenerate parabolic equation of second order, its principal part is not in divergence form in multi-dimensional case. We prove the existence of viscosity solutions to an initial-boundary value problem for this model.

Why quintic polynomial equations are not solvable in radicals

Křížek, Michal, Somer, Lawrence (2015)

Application of Mathematics 2015

We illustrate the main idea of Galois theory, by which roots of a polynomial equation of at least fifth degree with rational coefficients cannot general be expressed by radicals, i.e., by the operations + , - , · , : , and · n . Therefore, higher order polynomial equations are usually solved by approximate methods. They can also be solved algebraically by means of ultraradicals.

Wildland fire propagation modelling: A novel approach reconciling models based on moving interface methods and on reaction-diffusion equations

Kaur, Inderpreet, Mentrelli, Andrea, Bosseur, Frederic, Filippi, Jean Baptiste, Pagnini, Gianni (2015)

Application of Mathematics 2015

A novel approach to study the propagation of fronts with random motion is presented. This approach is based on the idea to consider the motion of the front, split into a drifting part and a fluctuating part; the front position is also split correspondingly. In particular, the drifting part can be related to existing methods for moving interfaces, for example, the Eulerian level set method and the Lagrangian discrete event system specification. The fluctuating part is the result of a comprehensive...

Currently displaying 721 – 740 of 764