Displaying 2201 – 2220 of 5989

Showing per page

La fonction inaugurale de La Géométrie de Descartes

Alain Herreman (2012)

Revue d'histoire des mathématiques

Cet article introduit les notions de textes et d’énoncés inauguraux pour désigner les textes et les énoncés dont la fonction est d’inaugurer des représentations tenues pour conformes. Ces notions une fois définies, expliquées et discutées, on établit que La Géométrie de Descartes est un texte inaugural dont la particularité est d’inaugurer simultanément plusieurs représentations. On montre que la résolution des problèmes sémiotiques inhérents à ces inaugurations rend compte de la progression et...

La neige est blanche ssi... Prédication et perception

Jean Petitot (1997)

Mathématiques et Sciences Humaines

L'article traite des liens entre la syntaxe et la sémantique formelle (de nature logique) des jugements perceptifs et leur contenu proprement perceptif (de nature géométrique). Dans les situations les plus élémentaires le contenu perceptif se ramène à des remplissements de domaines spatiaux (l'extension des objets) par des qualités sensibles (couleurs, textures, etc.). Ces remplissements sont descriptibles par des sections de fibrations appropriées, qui sont des cas particuliers de faisceaux. Il...

La réception des Vorlesungen über neuere Geometrie de Pasch par Peano

Sébastien Gandon (2006)

Revue d'histoire des mathématiques

Peano écrit en 1888 le Calcolo geometrico. Un an après, il publie I principii di geometria, où il développe, dans le sillage des Vorlesungen über neuere Geometriede Pasch, une axiomatisation de la géométrie. Comment concevoir le rapport entre ce projet et celui du calcul géométrique ? Dans cet article, nous soulignons le profond fossé entre les deux entreprises : alors que l’élaboration d’une algèbre géométrique vise chez Peano à manifester la singularité des grandeurs spatiales par rapport aux...

La théorie des ensembles en France avant la crise de 1905 : Baire, Borel, Lebesgue... et tous les autres

Hélène Gispert (1995)

Revue d'histoire des mathématiques

Cet article s’intéresse à la façon dont le milieu mathématique français s’est saisi, dans ses travaux, des nouveaux concepts et des nouvelles méthodes de la théorie des ensembles. Nous montrons que cette prise en compte s’inscrit dans un courant propre aux mathématiques françaises, la nouvelle théorie des fonctions, et que, loin d’être marginale, elle se situe dans l’activité classique du milieu. De ce fait, la théorie des ensembles mise en œuvre porte la marque de cette utilisation spécifique et...

Large cardinals and covering numbers

Pierre Matet (2009)

Fundamenta Mathematicae

The paper is concerned with the computation of covering numbers in the presence of large cardinals. In particular, we revisit Solovay's result that the Singular Cardinal Hypothesis holds above a strongly compact cardinal.

Large cardinals and Dowker products

Chris Good (1994)

Commentationes Mathematicae Universitatis Carolinae

We prove that if there is a model of set-theory which contains no first countable, locally compact, scattered, countably paracompact space X , whose Tychonoff square is a Dowker space, then there is an inner model which contains a measurable cardinal.

Large continuum, oracles

Saharon Shelah (2010)

Open Mathematics

Our main theorem is about iterated forcing for making the continuum larger than ℵ2. We present a generalization of [2] which deal with oracles for random, (also for other cases and generalities), by replacing ℵ1,ℵ2 by λ, λ + (starting with λ = λ <λ > ℵ1). Well, we demand absolute c.c.c. So we get, e.g. the continuum is λ + but we can get cov(meagre) = λ and we give some applications. As in non-Cohen oracles [2], it is a “partial” countable support iteration but it is c.c.c.

Currently displaying 2201 – 2220 of 5989