Displaying 41 – 60 of 81

Showing per page

Monotone (co)inductive types and positive fixed-point types

Ralph Matthes (2010)

RAIRO - Theoretical Informatics and Applications

We study five extensions of the polymorphically typed lambda-calculus (system F) by type constructs intended to model fixed-points of monotone operators. Building on work by Geuvers concerning the relation between term rewrite systems for least pre-fixed-points and greatest post-fixed-points of positive type schemes (i.e., non-nested positive inductive and coinductive types) and so-called retract types, we show that there are reduction-preserving embeddings even between systems of monotone (co)inductive...

Normalisation of the Theory T of Cartesian Closed Categories and Conservativity of Extensions T[x] of T

Anne Preller, P. Duroux (2010)

RAIRO - Theoretical Informatics and Applications

Using an inductive definition of normal terms of the theory of Cartesian Closed Categories with a given graph of distinguished morphisms, we give a reduction free proof of the decidability of this theory. This inductive definition enables us to show via functional completeness that extensions of such a theory by new constants (“indeterminates”) are conservative.

Polyadic algebras over nonclassical logics

Don Pigozzi, Antonino Salibra (1993)

Banach Center Publications

The polyadic algebras that arise from the algebraization of the first-order extensions of a SIC are characterized and a representation theorem is proved. Standard implicational calculi (SIC)'s were considered by H. Rasiowa [19] and include classical and intuitionistic logic and their various weakenings and fragments, the many-valued logics of Post and Łukasiewicz, modal logics that admit the rule of necessitation, BCK logic, etc.

Probabilistic operational semantics for the lambda calculus

Ugo Dal Lago, Margherita Zorzi (2012)

RAIRO - Theoretical Informatics and Applications

Probabilistic operational semantics for a nondeterministic extension of pure λ-calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Small-step and big-step semantics, inductively and coinductively defined, are given. Moreover, small-step and big-step semantics are shown to produce identical outcomes, both in call-by-value and in call-by-name. Plotkin’s CPS translation is extended to accommodate the choice operator and shown correct with respect...

Probabilistic operational semantics for the lambda calculus

Ugo Dal Lago, Margherita Zorzi (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Probabilistic operational semantics for a nondeterministic extension of pure λ-calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Small-step and big-step semantics, inductively and coinductively defined, are given. Moreover, small-step and big-step semantics are shown to produce identical outcomes, both in call-by-value and in call-by-name. Plotkin’s CPS translation is extended to accommodate the choice operator and shown correct with respect...

Probabilistic operational semantics for the lambda calculus

Ugo Dal Lago, Margherita Zorzi (2012)

RAIRO - Theoretical Informatics and Applications

Probabilistic operational semantics for a nondeterministic extension of pure λ-calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Small-step and big-step semantics, inductively and coinductively defined, are given. Moreover, small-step and big-step semantics are shown to produce identical outcomes, both in call-by-value and in call-by-name. Plotkin’s CPS translation is extended to accommodate the choice operator and shown correct with respect...

Currently displaying 41 – 60 of 81