Page 1 Next

Displaying 1 – 20 of 27

Showing per page

N-Dimensional Binary Vector Spaces

Kenichi Arai, Hiroyuki Okazaki (2013)

Formalized Mathematics

The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional...

New applications of the wreath product of forest algebras

Howard Straubing (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We give several new applications of the wreath product of forest algebras to the study of logics on trees. These include new simplified proofs of necessary conditions for definability in CTL and first-order logic with the ancestor relation; a sequence of identities satisfied by all forest languages definable in PDL; and new examples of languages outside CTL, along with an application to the question of what properties are definable in both CTL and LTL.

New kinds of hybrid filters of EQ-algebras

Akbar Paad (2024)

Mathematica Bohemica

The main goal of this paper is to introduce hybrid positive implicative and hybrid implicative (pre)filters of EQ-algebras. In the following, some characterizations of this hybrid (pre)filters are investigated and it is proved that the quotient algebras induced by hybrid positive implicative filters in residuated EQ-algebras are idempotent and residuated EQ-algebra. Moreover, the relationship between hybrid implicative prefilters and hybrid positive implicative prefilters are discussed and it is...

Niven’s Theorem

Artur Korniłowicz, Adam Naumowicz (2016)

Formalized Mathematics

This article formalizes the proof of Niven’s theorem [12] which states that if x/π and sin(x) are both rational, then the sine takes values 0, ±1/2, and ±1. The main part of the formalization follows the informal proof presented at Pr∞fWiki (https://proofwiki.org/wiki/Niven’s_Theorem#Source_of_Name). For this proof, we have also formalized the rational and integral root theorems setting constraints on solutions of polynomial equations with integer coefficients [8, 9].

Non additive ordinal relations representable by lower or upper probabilities

Andrea Capotorti, Giulianella Coletti, Barbara Vantaggi (1998)

Kybernetika

We characterize (in terms of necessary and sufficient conditions) binary relations representable by a lower probability. Such relations can be non- additive (as the relations representable by a probability) and also not “partially monotone” (as the relations representable by a belief function). Moreover we characterize relations representable by upper probabilities and those representable by plausibility. In fact the conditions characterizing these relations are not immediately deducible by means...

Normal forms in partial modal logic

Jan Jaspars (1993)

Banach Center Publications

A "partial" generalization of Fine's definition [Fin] of normal forms in normal minimal modal logic is given. This means quick access to complete axiomatizations and decidability proofs for partial modal logic [Thi].

Normal Subgroup of Product of Groups

Hiroyuki Okazaki, Kenichi Arai, Yasunari Shidama (2011)

Formalized Mathematics

In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.

Currently displaying 1 – 20 of 27

Page 1 Next