logic and completeness theorem
Cet article considère trois sortes de calcul propositionnel (mais surtout la troisième), à la fois d'un point de vue logique et d'un point de vue épistémologique : (1) les systèmes classiques qui ont les propriétés suivantes : (a) chaque axiome doit contenir seulement (ou doit être compris comme contenant seulement) des termes primitifs, (b) chaque définition est métalinguistique, (c) chaque définition est non créatrice ; (2) les systèmes de Leśnieswski qui satisfont (a) mais ni (b) ni (c), une...
In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9]....
We define the class of discrete classical categorial grammars, similar in the spirit to the notion of reversible class of languages introduced by Angluin and Sakakibara. We show that the class of discrete classical categorial grammars is identifiable from positive structured examples. For this, we provide an original algorithm, which runs in quadratic time in the size of the examples. This work extends the previous results of Kanazawa. Indeed, in our work, several types can be associated to a word...
In this article, we formalized Lebesgue's Convergence theorem of complex-valued function. We proved Lebesgue's Convergence Theorem of realvalued function using the theorem of extensional real-valued function. Then applying the former theorem to real part and imaginary part of complex-valued functional sequences, we proved Lebesgue's Convergence Theorem of complex-valued function. We also defined partial sums of real-valued functional sequences and complex-valued functional sequences and showed their...
Uninorms are important generalizations of triangular norms and conorms, with a neutral element lying anywhere in the unit interval, and left (right) semi-uninorms are non-commutative and non-associative extensions of uninorms. In this paper, we firstly introduce the concepts of left and right semi-uninorms on a complete lattice and illustrate these notions by means of some examples. Then, we lay bare the formulas for calculating the upper and lower approximation left (right) semi-uninorms of a binary...
In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1. The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Pi is item 26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.
Nous démontrons dans ce papier que les types du système habités uniquement par des -termes (les -types) sont à quantificateur positif. Nous présentons ensuite des conséquenses de ce résultat et quelques exemples.
We prove in this paper that the types of system inhabited uniquely by λI-terms (the I-types) have a positive quantifier. We give also consequences of this result and some examples.