Separable reduction theorems by the method of elementary submodels
We simplify the presentation of the method of elementary submodels and we show that it can be used to simplify proofs of existing separable reduction theorems and to obtain new ones. Given a nonseparable Banach space X and either a subset A ⊂ X or a function f defined on X, we are able for certain properties to produce a separable subspace of X which determines whether A or f has the property in question. Such results are proved for properties of sets: of being dense, nowhere dense, meager, residual...