Elementare Aussagen zur Arithmetik und Galoistheorie von Funktionenkörpern.
We describe first-order logic elementary embeddings in a torsion-free hyperbolic group in terms of Sela’s hyperbolic towers. Thus, if embeds elementarily in a torsion free hyperbolic group , we show that the group can be obtained by successive amalgamations of groups of surfaces with boundary to a free product of with some free group and groups of closed surfaces. This gives as a corollary that an elementary subgroup of a finitely generated free group is a free factor. We also consider the...
The theorem of Ax says that any regular selfmapping of a complex algebraic variety is either surjective or non-injective; this property is called surjunctivity and investigated in the present paper in the category of proregular mappings of proalgebraic spaces. We show that such maps are surjunctive if they commute with sufficiently large automorphism groups. Of particular interest is the case of proalgebraic varieties over infinite graphs. The paper intends to bring out relations between model theory,...
We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra . We discuss two cases, according to whether the parameter is a root of unity. We show that the universal enveloping algebra of embeds in a non-principal ultraproduct of , where varies over the primitive roots of unity.
We generalize a question of Büchi: Let R be an integral domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any given system of polynomial equations, each of which is linear in the kth powers of the unknowns, with coefficients in C? We state a number-theoretical problem, depending on k, a positive answer to which would imply a negative answer to the question for R = C = ℤ. We reduce a negative answer for k = 2 and for...