Selected results on measurable selections
Let . For n ≥ 2, we prove that if Selivanovski measurable functions from to Z give as preimages of H all Σₙ¹ subsets of , then so do continuous injections.
Given a countable Borel equivalence relation, I introduce an invariant measuring how difficult it is to find Borel sets separating its equivalence classes. I evaluate these invariants in several standard generic extensions.
On étend au cadre des groupes abéliens localement compacts certains résultats obtenus notamment par G. Debs, R. Kaufman, A. Kechris, A. Louveau et J. Saint Raymond sur la structure des fermés d’unicité et d’unicité au sens large du cercle unité. On montre également que de très nombreuses familles de compacts issues de l’Analyse Harmonique sont exactement de troisième classe dans la hiérarchie de Baire. Comme application, on donne une démonstration simple de l’existence d’ensembles de Dirichlet qui...
We introduce infinite Boolean functions and investigate some of their properties.
Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true sets.
We show that for a wide class of σ-algebras 𝓐, indicatrices of 𝓐-measurable functions admit the same characterization as indicatrices of Lebesgue-measurable functions. In particular, this applies to functions measurable in the sense of Marczewski.
We show that the classes of separable reflexive Banach spaces and of spaces with separable dual are strongly bounded. This gives a new proof of a recent result of E. Odell and Th. Schlumprecht, asserting that there exists a separable reflexive Banach space containing isomorphic copies of every separable uniformly convex Banach space.
We prove the following theorems: There exists an -covering with the property . Under there exists such that is not an -covering or is not an -covering]. Also we characterize the property of being an -covering.
We give a different proof of the well-known fact that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic. Our approach is based on the Kunen-Martin theorem.