On collections of almost disjoint families
If Martin’s Axiom is true and the continuum hypothesis is false, and X is a compact Radon measure space with a non-separable space, then there is a continuous surjection from X onto .
Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that contains a complemented copy of c₀ if one of the infinite-dimensional Banach...
The concepts of bounded subset, complete subset and directed subset, wich are well known in the context of partially ordered sets (X,≤), are extended in order to become appliable, with coherence, in fuzzy relational systems (X,R). The properties of these generalized structures are analyzed and operative exemples of them are presented.
Let G be a locally compact group, and let U be its unitary representation on a Hilbert space H. Endow the space ℒ(H) of bounded linear operators on H with the weak operator topology. We prove that if U is a measurable map from G to ℒ(H) then it is continuous. This result was known before for separable H. We also prove that the following statement is consistent with ZFC: every measurable homomorphism from a locally compact group into any topological group is continuous.
We prove that in some cases definable thin sets (including chains) of Borel partial orderings are necessarily countably cofinal. This includes the following cases: analytic thin sets, ROD thin sets in the Solovay model, and Σ¹₂ thin sets under the assumption that for all reals x. We also prove that definable thin wellorderings admit partitions into definable chains in the Solovay model.
Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 second order definable over H(κ) if there exists a second order sentence ϕ and a parameter P ⊆ H(κ) such that functions f and g from κ into 2 are equivalent iff the structure ⟨ H(κ), ∈, P, f, g ⟩ satisfies ϕ. The possible numbers of equivalence classes of second order definable equivalence relations include all the nonzero cardinals at most κ⁺. Additionally, the possibilities are closed under unions...
The convolution of ultrafilters of closed subsets of a normal topological group is considered as a substitute of the extension onto of the group operation. We find a subclass of ultrafilters for which this extension is well-defined and give some examples of pathologies. Next, for a given locally compact group and its dense subgroup , we construct subsets of β algebraically isomorphic to . Finally, we check whether the natural mapping from β onto β is a homomorphism with respect to the extension...
We consider the families of all subspaces of size ω₁ of (or of a compact zero-dimensional space X of weight ω₁ in general) which are normal, have the Lindelöf property or are closed under limits of convergent ω₁-sequences. Various relations among these families modulo the club filter in are shown to be consistently possible. One of the main tools is dealing with a subspace of the form X ∩ M for an elementary submodel M of size ω₁. Various results with this flavor are obtained. Another tool used...