Orderings of Fuzzy Sets Based on Fuzzy Orderings Part II: Generalizations.
Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain of infinite subsets of ω, there exists , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain , hence a ψ-space with Stone-Čech remainder...
An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.
We study some natural sets arising in the theory of ordinary differential equations in one variable from the point of view of descriptive set theory and in particular classify them within the Borel hierarchy. We prove that the set of Cauchy problems for ordinary differential equations which have a unique solution is -complete and that the set of Cauchy problems which locally have a unique solution is -complete. We prove that the set of Cauchy problems which have a global solution is -complete...
In [6] an approach to the representation of synonyms and antonyms via the automorphisms of the De Morgan Algebra [0,1]X was suggested. In [3], Ovchinnikov established a representation theorem for automorphisms of the function's complete and completely distributive lattice [0,1]X with the pointwise extension of Min and Max operations in [0,1]. Ovchinnikov results are now inmediately generalized by using a positive t-norm T and its dual eta-dual t-conorm T*. These results are applied to study the...
The class of overtaker binary relations associated with the order in a lattice is defined and used to generalize the representations of L-fuzzy sets by means of level sets or fuzzy points.
A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual...
We introduce the properties of a space to be strictly or strictly , where , and we analyze them and other generalizations of -sequentiality () in Function Spaces, such as Kombarov’s weakly and strongly -sequentiality, and Kocinac’s and -properties. We characterize these in in terms of cover-properties in ; and we prove that weak -sequentiality is equivalent to -property, where and , in the class of spaces which are -compact for every ; and that is a -space iff satisfies...
Bi-capacities have been recently introduced as a natural generalization of capacities (or fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible models in decision making, although their complexity is of order , instead of for fuzzy measures. In order to reduce the complexity, the paper proposes the notion of -symmetric bi- capacities, in the same spirit as for -symmetric fuzzy measures. The main idea is to partition the set of criteria (or states of nature,...
We parametrize Cichoń’s diagram and show how cardinals from Cichoń’s diagram yield classes of small sets of reals. For instance, we show that there exist subsets N and M of and continuous functions such that • N is and , the collection of all vertical sections of N, is a basis for the ideal of measure zero subsets of ; • M is and is a basis for the ideal of meager subsets of ; •. From this we derive that for a separable metric space X, •if for all Borel (resp. ) sets with all...
Let m ≥ 2 be an integer. We show that ZF + “Every countable set of m-element sets has an infinite partial choice function” is not strong enough to prove that every countable set of m-element sets has a choice function, answering an open question from . (Actually a slightly stronger result is obtained.) The independence result in the case where m = p is prime is obtained by way of a permutation (Fraenkel-Mostowski) model of ZFA, in which the set of atoms (urelements) has the structure of a vector...
We prove the results stated in the title.