Displaying 141 – 160 of 183

Showing per page

Stationary reflection and level by level equivalence

Arthur W. Apter (2009)

Colloquium Mathematicae

We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with certain additional “inner model like” properties. In particular, in this model, the class of Mahlo cardinals reflecting stationary sets is the same as the class of weakly compact cardinals, and every regular Jónsson cardinal is weakly compact. On the other hand, we force and construct a model for the level by level equivalence between strong compactness and supercompactness...

Stationary reflection and the universal Baire property

Stuart Zoble (2006)

Fundamenta Mathematicae

We show that ω₁-Universally Baire self-justifying systems are fully Universally Baire under the Weak Stationary Reflection Principle for Pairs. This involves analyzing the notion of a weakly captured set of reals, a weakening of the Universal Baire Property.

Stationary reflection in extender models

Ernest Schimmerling (2005)

Fundamenta Mathematicae

Working in L[E], we examine which large cardinal properties of κ imply that all stationary subsets of cof(<κ) ∩ κ⁺ reflect.

Stochastic fuzzy differential equations with an application

Marek T. Malinowski, Mariusz Michta (2011)

Kybernetika

In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.

Stranger things about forcing without AC

Martin Goldstern, Lukas D. Klausner (2020)

Commentationes Mathematicae Universitatis Carolinae

Typically, set theorists reason about forcing constructions in the context of Zermelo--Fraenkel set theory (ZFC). We show that without the axiom of choice (AC), several simple properties of forcing posets fail to hold, one of which answers Miller's question from the work: Arnold W. Miller, {Long Borel hierarchies}, MLQ Math. Log. Q. {54} (2008), no. 3, 307--322.

Strong compactness, measurability, and the class of supercompact cardinals

Arthur W. Apter (2001)

Fundamenta Mathematicae

We prove two theorems concerning strong compactness, measurability, and the class of supercompact cardinals. We begin by showing, relative to the appropriate hypotheses, that it is consistent non-trivially for every supercompact cardinal to be the limit of (non-supercompact) strongly compact cardinals. We then show, relative to the existence of a non-trivial (proper or improper) class of supercompact cardinals, that it is possible to have a model with the same class of supercompact cardinals in...

Strong covering without squares

Saharon Shelah (2000)

Fundamenta Mathematicae

Let W be an inner model of ZFC. Let κ be a cardinal in V. We say that κ-covering holds between V and W iff for all X ∈ V with X ⊆ ON and V ⊨ |X| < κ, there exists Y ∈ W such that X ⊆ Y ⊆ ON and V ⊨ |Y| < κ. Strong κ-covering holds between V and W iff for every structure M ∈ V for some countable first-order language whose underlying set is some ordinal λ, and every X ∈ V with X ⊆ λ and V ⊨ |X| < κ, there is Y ∈ W such that X ⊆ Y ≺ M and V ⊨ |Y| < κ.   We prove that if κ is V-regular,...

Strong Fubini axioms from measure extension axioms

Piotr Zakrzewski (1992)

Commentationes Mathematicae Universitatis Carolinae

It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.

Strong Fubini properties for measure and category

Krzysztof Ciesielski, Miklós Laczkovich (2003)

Fundamenta Mathematicae

Let (FP) abbreviate the statement that 0 1 ( 0 1 f d y ) d x = 0 1 ( 0 1 f d x ) d y holds for every bounded function f: [0,1]² → ℝ whenever each of the integrals involved exists. We shall denote by (SFP) the statement that the equality above holds for every bounded function f: [0,1]² → ℝ having measurable vertical and horizontal sections. It follows from well-known results that both of (FP) and (SFP) are independent of the axioms of ZFC. We investigate the logical connections of these statements with several other strong Fubini type properties...

Strong Fubini properties of ideals

Ireneusz Recław, Piotr Zakrzewski (1999)

Fundamenta Mathematicae

 Let I and J be σ-ideals on Polish spaces X and Y, respectively. We say that the pair ⟨I,J⟩ has the Strong Fubini Property (SFP) if for every set D ⊆ X× Y with measurable sections, if all its sections D x = y : x , y D are in J, then the sections D y = x : x , y D are in I for every y outside a set from J (“measurable" means being a member of the σ-algebra of Borel sets modulo sets from the respective σ-ideal). We study the question of which pairs of σ-ideals have the Strong Fubini Property. Since CH excludes this phenomenon completely,...

Strong meager properties for filters

Claude Laflamme (1995)

Fundamenta Mathematicae

We analyze several “strong meager” properties for filters on the natural numbers between the classical Baire property and a filter being F σ . Two such properties have been studied by Talagrand and a few more combinatorial ones are investigated. In particular, we define the notion of a P⁺-filter, a generalization of the traditional concept of P-filter, and prove the existence of a non-meager P⁺-filter. Our motivation lies in understanding the structure of filters generated by complements of members...

Strong measure zero and meager-additive sets through the prism of fractal measures

Ondřej Zindulka (2019)

Commentationes Mathematicae Universitatis Carolinae

We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of 2 ω is meager-additive if and only if it is -additive; if f : 2 ω 2 ω is continuous and X is meager-additive, then so is f ( X ) .

Stronger ideals over κ λ

Yo Matsubara (2002)

Fundamenta Mathematicae

In §1 we define some properties of ideals by using games. These properties strengthen precipitousness. We call these stronger ideals. In §2 we show some limitations on the existence of such ideals over κ λ . We also present a consistency result concerning the existence of such ideals over κ λ . In §3 we show that such ideals satisfy stronger normality. We show a cardinal arithmetical consequence of the existence of strongly normal ideals. In § 4 we study some “large cardinal-like” consequences of stronger...

Strongly almost disjoint familes, revisited

A. Hajnal, Istvan Juhász, Saharon Shelah (2000)

Fundamenta Mathematicae

The relations M(κ,λ,μ) → B [resp. B(σ)] meaning that if A [ κ ] λ with |A|=κ is μ-almost disjoint then A has property B [resp. has a σ-transversal] had been introduced and studied under GCH in [EH]. Our two main results here say the following: Assume GCH and let ϱ be any regular cardinal with a supercompact [resp. 2-huge] cardinal above ϱ. Then there is a ϱ-closed forcing P such that, in V P , we have both GCH and M ( ϱ ( + ϱ + 1 ) , ϱ + , ϱ ) B [resp. M ( ϱ ( + ϱ + 1 ) , λ , ϱ ) B ( ϱ + ) for all λ ϱ ( + ϱ + 1 ) ] . These show that, consistently, the results of [EH] are sharp. The necessity...

Currently displaying 141 – 160 of 183