Displaying 41 – 60 of 191

Showing per page

Complicated BE-algebras and characterizations of ideals

Yılmaz Çeven, Zekiye Çiloğlu (2015)

Discussiones Mathematicae - General Algebra and Applications

In this paper, using the notion of upper sets, we introduced the notions of complicated BE-Algebras and gave some related properties on complicated, self-distributive and commutative BE-algebras. In a self-distributive and complicated BE-algebra, characterizations of ideals are obtained.

Curry algebras N 1

Jair Minoro Abe (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In [6] da Costa has introduced a new hierarchy N i , 1 i w of logics that are both paraconsistent and paracomplete. Such logics are now known as non-alethic logics. In this article we present an algebraic version of the logics N i and study some of their properties.

Deductive systems of BCK-algebras

Sergio A. Celani (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we shall give some results on irreducible deductive systems in BCK-algebras and we shall prove that the set of all deductive systems of a BCK-algebra is a Heyting algebra. As a consequence of this result we shall show that the annihilator F * of a deductive system F is the the pseudocomplement of F . These results are more general than that the similar results given by M. Kondo in [7].

Direct product decompositions of bounded commutative residuated -monoids

Ján Jakubík (2008)

Czechoslovak Mathematical Journal

The notion of bounded commutative residuated -monoid ( B C R -monoid, in short) generalizes both the notions of M V -algebra and of B L -algebra. Let A ̧ be a B C R -monoid; we denote by ( A ̧ ) the underlying lattice of A ̧ . In the present paper we show that each direct...

Directoids with sectionally antitone involutions and skew MV-algebras

Ivan Chajda, Miroslav Kolařík (2007)

Mathematica Bohemica

It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras.

Directoids with sectionally switching involutions

Ivan Chajda (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

It is shown that every directoid equipped with sectionally switching mappings can be represented as a certain implication algebra. Moreover, if the directoid is also commutative, the corresponding implication algebra is defined by four simple identities.

Distributive implication groupoids

Ivan Chajda, Radomir Halaš (2007)

Open Mathematics

We introduce a concept of implication groupoid which is an essential generalization of the implication reduct of intuitionistic logic, i.e. a Hilbert algebra. We prove several connections among ideals, deductive systems and congruence kernels which even coincide whenever our implication groupoid is distributive.

Duality for Hilbert algebras with supremum: An application

Hernando Gaitan (2017)

Mathematica Bohemica

We modify slightly the definition of H -partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of H -space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms.

Engel BCI-algebras: an application of left and right commutators

Ardavan Najafi, Arsham Borumand Saeid (2021)

Mathematica Bohemica

We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of n -Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type 2 is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that...

Equational spectrum of Hilbert varieties

R. Padmanabhan, Sergiu Rudeanu (2009)

Open Mathematics

We prove that an equational class of Hilbert algebras cannot be defined by a single equation. In particular Hilbert algebras and implication algebras are not one-based. Also, we use a seminal theorem of Alfred Tarski in equational logic to characterize the set of cardinalities of all finite irredundant bases of the varieties of Hilbert algebras, implication algebras and commutative BCK algebras: all these varieties can be defined by independent bases of n elements, for each n > 1.

Currently displaying 41 – 60 of 191