Previous Page 10

Displaying 181 – 189 of 189

Showing per page

Lower bounds for the domination number

Ermelinda Delaviña, Ryan Pepper, Bill Waller (2010)

Discussiones Mathematicae Graph Theory

In this note, we prove several lower bounds on the domination number of simple connected graphs. Among these are the following: the domination number is at least two-thirds of the radius of the graph, three times the domination number is at least two more than the number of cut-vertices in the graph, and the domination number of a tree is at least as large as the minimum order of a maximal matching.

Lower bounds on signed edge total domination numbers in graphs

H. Karami, S. M. Sheikholeslami, Abdollah Khodkar (2008)

Czechoslovak Mathematical Journal

The open neighborhood N G ( e ) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e . Let f be a function on E ( G ) , the edge set of G , into the set { - 1 , 1 } . If x N G ( e ) f ( x ) 1 for each e E ( G ) , then f is called a signed edge total dominating function of G . The minimum of the values e E ( G ) f ( e ) , taken over all signed edge total dominating function f of G , is called the signed edge total domination number of G and is denoted by γ s t ' ( G ) . Obviously, γ s t ' ( G ) is defined only for graphs G which have no connected components...

LVMB manifolds and simplicial spheres

Jérôme Tambour (2012)

Annales de l’institut Fourier

LVM and LVMB manifolds are a large family of non kähler manifolds. For instance, Hopf manifolds and Calabi-Eckmann manifolds can be seen as LVMB manifolds. The LVM manifolds have a natural action of a real torus and the quotient of this action is a polytope. This quotient allows us to relate closely LVM manifolds to the moment-angle manifolds studied by Buchstaber and Panov. Our aim is to generalize the polytope associated to a LVM manifold to the LVMB case and study the properties of this generalization....

L-zero-divisor graphs of direct products of L-commutative rings

S. Ebrahimi Atani, M. Shajari Kohan (2011)

Discussiones Mathematicae - General Algebra and Applications

L-zero-divisor graphs of L-commutative rings have been introduced and studied in [5]. Here we consider L-zero-divisor graphs of a finite direct product of L-commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the L-ziro-divisor graph of a L-ring when extending to a finite direct product of L-commutative rings.

Currently displaying 181 – 189 of 189

Previous Page 10